|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
peft_model_id = f"alimrb/eff24-new" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
return_dict=True, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
|
|
model = PeftModel.from_pretrained(model, peft_model_id) |
|
|
|
def make_inference(question, answer): |
|
batch = tokenizer( |
|
f"### Question:\n{question}\n\n### Answer:", |
|
return_tensors="pt", |
|
) |
|
|
|
|
|
batch = {k: v.to(model.device) for k, v in batch.items()} |
|
|
|
with torch.cuda.amp.autocast(): |
|
output_tokens = model.generate(**batch, max_new_tokens=50) |
|
|
|
return tokenizer.decode(output_tokens[0], skip_special_tokens=True) |
|
|
|
if __name__ == "__main__": |
|
|
|
import gradio as gr |
|
|
|
gr.Interface( |
|
make_inference, |
|
[ |
|
gr.Textbox(lines=2, label="Question"), |
|
], |
|
gr.Textbox(label="Answer"), |
|
title="EFF24", |
|
description="EFF24 is a generative model that generates Answers for Questions." |
|
).launch() |
|
|