import streamlit as st import pandas as pd import pickle # Load Model model = pickle.load(open('logreg_model.pkl', 'rb')) st.title('Iris Variety Prediction') # Form with st.form(key='form_parameters'): sepal_length = st.slider('Sepal Length', 4.0, 8.0, 4.0) sepal_width = st.slider('Sepal Width', 2.0, 4.5, 2.0) petal_length = st.slider('Petal Length', 1.0, 7.0, 1.0) petal_width = st.slider('Petal Width', 0.1, 2.5, 0.1) st.markdown('---') submitted = st.form_submit_button('Predict') # Data Inference data_inf = { 'sepal.length': sepal_length, 'sepal.width': sepal_width, 'petal.length': petal_length, 'petal.width': petal_width } data_inf = pd.DataFrame([data_inf]) if submitted: # Predict using Logistic Regression y_pred_inf = model.predict(data_inf) st.write('## Iris Variety = '+ str(y_pred_inf))