|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import gradio as gr |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
tokenizer = AutoTokenizer.from_pretrained("alibidaran/medical_transcription_generator") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("alibidaran/medical_transcription_generator").to(device) |
|
def generate_text(Text,Max_length,Temperature): |
|
torch.manual_seed(32) |
|
tokenizer.pad_token_id=tokenizer.eos_token_id |
|
with torch.no_grad(): |
|
input_ids = tokenizer(Text, return_tensors="pt")["input_ids"].to('cpu') |
|
output=model.generate(input_ids,max_new_tokens=Max_length,do_sample=True, temperature=Temperature, top_p=0.90,top_k=10) |
|
return tokenizer.decode(output[0]) |
|
demo=gr.Interface( |
|
generate_text, |
|
['text', |
|
gr.Slider(50,2000,value=100,step=10), |
|
gr.Slider(0,2,value=0.7,step=0.1)], |
|
'text', |
|
theme=gr.themes.Base(primary_hue='blue',secondary_hue='cyan'), |
|
description="Medical Trasncript Generator" |
|
) |
|
demo.launch() |