Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,202 +1,66 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
from dotenv import load_dotenv
|
4 |
-
from PyPDF2 import PdfReader
|
5 |
-
from langchain.text_splitter import CharacterTextSplitter
|
6 |
-
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
-
from langchain.
|
9 |
-
from langchain.memory import ConversationBufferMemory
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
-
from htmlTemplates import css, bot_template, user_template
|
12 |
-
from langchain.llms import HuggingFaceHub
|
13 |
-
from deep_translator import GoogleTranslator
|
14 |
-
import pandas as pd
|
15 |
-
from langchain_groq import ChatGroq
|
16 |
-
from openai import OpenAI
|
17 |
from langchain.chat_models import ChatOpenAI
|
18 |
-
|
19 |
-
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['Key2']
|
20 |
-
os.environ["OPENAI_API_KEY"] =st.secrets['Key3']
|
21 |
-
from langchain.llms import LlamaCpp
|
22 |
-
from langchain import PromptTemplate, LLMChain
|
23 |
-
from langchain.callbacks.manager import CallbackManager
|
24 |
-
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
25 |
-
|
26 |
###########################################################################################
|
27 |
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
for page in pdf_reader.pages:
|
33 |
-
text += page.extract_text()
|
34 |
-
return text
|
35 |
-
#######################################################################################
|
36 |
-
def load_file():
|
37 |
-
loader = TextLoader('d2.txt')
|
38 |
-
documents = loader.load()
|
39 |
-
return documents
|
40 |
########################################################################################
|
41 |
-
def
|
42 |
-
text_splitter =
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
|
63 |
-
# llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
|
64 |
-
llm = HuggingFaceHub(
|
65 |
-
#repo_id="mistralai/Mistral-7B-Instruct-v0.2",
|
66 |
-
repo_id="google/gemma-1.1-7b-it",
|
67 |
-
#repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
|
68 |
-
model_kwargs={"temperature": 0.5, "max_length": 2048},
|
69 |
-
)
|
70 |
-
|
71 |
-
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
72 |
-
conversation_chain = ConversationalRetrievalChain.from_llm(
|
73 |
-
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
|
74 |
-
)
|
75 |
-
return conversation_chain
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
def handle_userinput(user_question:str):
|
80 |
-
response = st.session_state.conversation({"question": user_question})
|
81 |
-
st.session_state.chat_history = response["chat_history"]
|
82 |
-
|
83 |
-
for i, message in enumerate(st.session_state.chat_history):
|
84 |
-
if i % 2 == 0:
|
85 |
-
text2=message.content
|
86 |
-
translator = GoogleTranslator(source='english', target='persian')
|
87 |
-
result = translator.translate(text2)
|
88 |
-
st.write("سوال کاربر: "+result)
|
89 |
-
else:
|
90 |
-
text1=message.content
|
91 |
-
translator = GoogleTranslator(source='english', target='persian')
|
92 |
-
result = translator.translate(text1)
|
93 |
-
st.write("پاسخ ربات: "+result)
|
94 |
-
|
95 |
-
#############################################################################################################
|
96 |
-
def read_pdf_pr_en(pdf_file_path):
|
97 |
-
from deep_translator import GoogleTranslator
|
98 |
-
import PyPDF2
|
99 |
-
# مسیر فایل PDF را تعیین کنید
|
100 |
-
#pdf_file_path = '/content/d2en.pdf'
|
101 |
-
# باز کردن فایل PDF
|
102 |
-
with open(pdf_file_path, 'rb') as pdf_file:
|
103 |
-
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
104 |
-
# خواندن محتوای صفحهها
|
105 |
-
full_text = ''
|
106 |
-
for page in pdf_reader.pages:
|
107 |
-
page_pdf=page.extract_text()
|
108 |
-
translator = GoogleTranslator(source='persian', target='english')
|
109 |
-
result = translator.translate(page_pdf)
|
110 |
-
full_text +=result
|
111 |
-
st.write(full_text)
|
112 |
-
return(full_text)
|
113 |
-
#################################################################################################################
|
114 |
-
def get_pdf_text(pdf_docs):
|
115 |
-
text = ""
|
116 |
-
for pdf in pdf_docs:
|
117 |
-
pdf_reader = PdfReader(pdf)
|
118 |
-
for page in pdf_reader.pages:
|
119 |
-
txt_page=page.extract_text()
|
120 |
-
text += txt_page
|
121 |
-
return text
|
122 |
-
#######################################################################################################################
|
123 |
-
def upload_xls():
|
124 |
-
st.title("آپلود و نمایش فایل اکسل")
|
125 |
-
uploaded_file = st.file_uploader("لطفاً فایل اکسل خود را آپلود کنید", type=["xlsx", "xls"])
|
126 |
-
if uploaded_file is not None:
|
127 |
-
df = pd.read_excel(uploaded_file)
|
128 |
-
st.write("دیتا فریم مربوط به فایل اکسل:")
|
129 |
-
st.write(df)
|
130 |
-
return df
|
131 |
-
|
132 |
-
################################################################################################################
|
133 |
-
def sentences_f(sentence,df2):
|
134 |
-
words = sentence.split()
|
135 |
-
df1 = pd.DataFrame(words, columns=['کلمات'])
|
136 |
-
df1['معادل'] = ''
|
137 |
-
for i, word in df1['کلمات'].items():
|
138 |
-
match = df2[df2['کلمات'] == word]
|
139 |
-
if not match.empty:
|
140 |
-
df1.at[i, 'معادل'] = match['معادل'].values[0]
|
141 |
-
df1['معادل'] = df1.apply(lambda row: row['کلمات'] if row['معادل'] == '' else row['معادل'], axis=1)
|
142 |
-
translated_sentence = ' '.join(df1['معادل'].tolist())
|
143 |
-
return translated_sentence
|
144 |
-
####################################################################################################################
|
145 |
-
|
146 |
####################################################################################################################
|
147 |
def main():
|
148 |
st.set_page_config(
|
149 |
page_title="Chat Bot PDFs",
|
150 |
page_icon=":books:",
|
151 |
)
|
152 |
-
|
153 |
-
#st.markdown("# Chat with a Bot")
|
154 |
-
#st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾")
|
155 |
-
|
156 |
-
st.write(css, unsafe_allow_html=True)
|
157 |
-
#df2=upload_xls()
|
158 |
-
|
159 |
-
|
160 |
-
if "conversation" not in st.session_state:
|
161 |
-
st.session_state.conversation = None
|
162 |
-
if "chat_history" not in st.session_state:
|
163 |
-
st.session_state.chat_history = None
|
164 |
-
|
165 |
|
166 |
st.header("Chat Bot PDFs :books:")
|
167 |
user_question = st.text_input("Ask a question about your documents:")
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
171 |
if st.button("Answer"):
|
172 |
with st.spinner("Answering"):
|
173 |
-
|
174 |
|
175 |
if st.button("CLEAR"):
|
176 |
with st.spinner("CLEARING"):
|
177 |
st.cache_data.clear()
|
178 |
|
179 |
|
180 |
-
with st.sidebar:
|
181 |
-
st.
|
182 |
-
|
183 |
-
|
184 |
-
if st.button("Process"):
|
185 |
-
with st.spinner("Processing"):
|
186 |
-
# get pdf text
|
187 |
-
raw_text = get_pdf_text(pdf_docs)
|
188 |
-
|
189 |
-
# get the text chunks
|
190 |
-
text_chunks = get_text_chunks(raw_text)
|
191 |
-
|
192 |
-
# create vector store
|
193 |
-
vectorstore = get_vectorstore(text_chunks)
|
194 |
-
|
195 |
-
# create conversation chain
|
196 |
-
st.session_state.conversation = get_conversation_chain(vectorstore)
|
197 |
-
|
198 |
-
#compelete build model
|
199 |
-
st.write("compelete build model")
|
200 |
|
201 |
|
202 |
if __name__ == "__main__":
|
|
|
1 |
+
from langchain.document_loaders import PyPDFDirectoryLoader
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
|
|
|
|
3 |
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.llms import openai
|
|
|
5 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from langchain.chat_models import ChatOpenAI
|
7 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
###########################################################################################
|
9 |
|
10 |
+
def get_pdf_load():
|
11 |
+
loader=PyPDFDirectoryLoader("./data")
|
12 |
+
document=loader.load()
|
13 |
+
return document
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
########################################################################################
|
15 |
+
def get_text_split(document):
|
16 |
+
text_splitter= RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
17 |
+
texts =text_splitter.split_documents(document)
|
18 |
+
return texts
|
19 |
+
#########################################################################################
|
20 |
+
def get_vectorstore(texts):
|
21 |
+
#Vector and Embeddings
|
22 |
+
DB_FAISS_PATH = 'vectore_Imstudio/faiss'
|
23 |
+
#Vector and Embeddings
|
24 |
+
embeddings= HuggingFaceBgeEmbeddings(model_name='Avditvs/multilingual-e5-small-distill-base-0.1', model_kwargs={'device': 'cpu'})
|
25 |
+
db= FAISS.from_documents(texts,embeddings)
|
26 |
+
db.save_local(DB_FAISS_PATH)
|
27 |
+
return db
|
28 |
+
############################################################################################
|
29 |
+
def get_chain(db):
|
30 |
+
llm=ChatOpenAI(base_url="https://bd4c-85-9-86-142.ngrok-free.app/v1", api_key="lm-studio",temperature=0.1,model="lmstudio-community/Meta-Llama-3-8B-Instruct-GGUF")
|
31 |
+
#Build a chain
|
32 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
33 |
+
llm,db.as_retriever (search_kwargs={'k':2}),return_source_documents=True)
|
34 |
+
return qa_chain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
####################################################################################################################
|
36 |
def main():
|
37 |
st.set_page_config(
|
38 |
page_title="Chat Bot PDFs",
|
39 |
page_icon=":books:",
|
40 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
st.header("Chat Bot PDFs :books:")
|
43 |
user_question = st.text_input("Ask a question about your documents:")
|
44 |
+
if st.button("Build Model"):
|
45 |
+
with st.spinner("Waiting"):
|
46 |
+
document=get_pdf_load()
|
47 |
+
texts=et_text_split(document)
|
48 |
+
db=get_vectorstore(texts)
|
49 |
+
qa_chain=get_chain(db)
|
50 |
+
st.write("compelete build model")
|
51 |
+
|
52 |
if st.button("Answer"):
|
53 |
with st.spinner("Answering"):
|
54 |
+
|
55 |
|
56 |
if st.button("CLEAR"):
|
57 |
with st.spinner("CLEARING"):
|
58 |
st.cache_data.clear()
|
59 |
|
60 |
|
61 |
+
#with st.sidebar:
|
62 |
+
#if st.button("Process build model"):
|
63 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
if __name__ == "__main__":
|