Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,9 +10,14 @@ from langchain.memory import ConversationBufferMemory
|
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
from htmlTemplates import css, bot_template, user_template
|
12 |
from langchain.llms import HuggingFaceHub
|
|
|
13 |
|
14 |
# set this key as an environment variable
|
15 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def get_pdf_text(pdf_docs : list) -> str:
|
18 |
text = ""
|
@@ -67,6 +72,7 @@ def handle_userinput(user_question:str):
|
|
67 |
st.write("سوال کاربر: " + message.content)
|
68 |
else:
|
69 |
st.write("پاسخ ربات: " + message.content)
|
|
|
70 |
|
71 |
|
72 |
def main():
|
@@ -88,7 +94,8 @@ def main():
|
|
88 |
|
89 |
|
90 |
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
|
91 |
-
|
|
|
92 |
if user_question:
|
93 |
handle_userinput(user_question)
|
94 |
|
@@ -116,4 +123,4 @@ def main():
|
|
116 |
st.write("compelete build model")
|
117 |
|
118 |
if __name__ == "__main__":
|
119 |
-
main()
|
|
|
10 |
from langchain.chains import ConversationalRetrievalChain
|
11 |
from htmlTemplates import css, bot_template, user_template
|
12 |
from langchain.llms import HuggingFaceHub
|
13 |
+
import translators
|
14 |
|
15 |
# set this key as an environment variable
|
16 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
|
17 |
+
###########################################################################################
|
18 |
+
def trs_fa_to_en(text):
|
19 |
+
txt_en=translators.translate_text(text,to_language='en',from_language='auto')
|
20 |
+
return txt_en
|
21 |
|
22 |
def get_pdf_text(pdf_docs : list) -> str:
|
23 |
text = ""
|
|
|
72 |
st.write("سوال کاربر: " + message.content)
|
73 |
else:
|
74 |
st.write("پاسخ ربات: " + message.content)
|
75 |
+
|
76 |
|
77 |
|
78 |
def main():
|
|
|
94 |
|
95 |
|
96 |
st.header("Chat with a Bot 🤖🦾 that tries to answer questions about multiple PDFs :books:")
|
97 |
+
user_question_t = st.text_input("Ask a question about your documents:")
|
98 |
+
user_question=trs_fa_to_en(text= user_question_t)
|
99 |
if user_question:
|
100 |
handle_userinput(user_question)
|
101 |
|
|
|
123 |
st.write("compelete build model")
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
+
main()
|