Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoTokenizer
|
|
|
3 |
|
4 |
# Load a small CPU model for text to vector processing
|
5 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
@@ -7,15 +8,11 @@ model = AutoModel.from_pretrained(model_name)
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
def text_to_vector(text):
|
10 |
-
"""
|
11 |
-
Converts text to a vector representation using a pre-trained model.
|
12 |
-
"""
|
13 |
inputs = tokenizer(text, return_tensors="pt")
|
14 |
outputs = model(**inputs)
|
15 |
vector = outputs.pooler_output.detach().numpy()[0]
|
16 |
-
# Convert
|
17 |
-
|
18 |
-
return vector_str
|
19 |
|
20 |
demo = gr.Interface(
|
21 |
fn=text_to_vector,
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import numpy as np
|
4 |
|
5 |
# Load a small CPU model for text to vector processing
|
6 |
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
def text_to_vector(text):
|
|
|
|
|
|
|
11 |
inputs = tokenizer(text, return_tensors="pt")
|
12 |
outputs = model(**inputs)
|
13 |
vector = outputs.pooler_output.detach().numpy()[0]
|
14 |
+
# Convert to a string representation for display
|
15 |
+
return ", ".join(map(str, vector))
|
|
|
16 |
|
17 |
demo = gr.Interface(
|
18 |
fn=text_to_vector,
|