# Thanks: https://huggingface.co./spaces/stabilityai/stable-diffusion-3-medium import spaces import os import gradio as gr import numpy as np import random import torch from diffusers import StableDiffusion3Pipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline device = "cuda" dtype = torch.float16 repo = "stabilityai/stable-diffusion-3.5-large" t2i = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.bfloat16, token=os.environ["TOKEN"]).to(device) model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3-mini-4k-instruct", device_map="cuda", torch_dtype=torch.bfloat16, trust_remote_code=True, token=os.environ["TOKEN"] ) tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", token=os.environ["TOKEN"]) upsampler = pipeline( "text-generation", model=model, tokenizer=tokenizer, ) generation_args = { "max_new_tokens": 200, "return_full_text": False, "temperature": 0.7, "do_sample": True, "top_p": 0.95 } MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1344 @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): messages = [ {"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「クールなアニメ風の女の子」"}, {"role": "assistant", "content": "An anime style illustration of a cool-looking teenage girl with an edgy, confident expression. She has piercing eyes, a slight smirk, and colorful hair that flows in the wind. "}, {"role": "user", "content": "次のプロンプトを想像を膨らませて英語に翻訳してください。「実写風の女子高生」"}, {"role": "assistant", "content": "A photorealistic image of a female high school student standing on a city street. She is wearing a traditional Japanese school uniform, consisting of a navy blue blazer, a white blouse, and a knee-length plaid skirt. "}, {"role": "user", "content": f"次のプロンプトを想像を膨らませて英語に翻訳してください。「{prompt}」" }, ] output = upsampler(messages, **generation_args) upsampled_prompt=output[0]['generated_text'] print(upsampled_prompt) if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = t2i( prompt = upsampled_prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image, seed, upsampled_prompt examples = [ "美味しい肉", "馬に乗った宇宙飛行士", "アニメ風の美少女", "女子高生の写真", "寿司でできた家に入っているコーギー", "バナナとアボカドが戦っている様子" ] css=""" #col-container { margin: 0 auto; max-width: 580px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # 日本語が入力できる SD3.5 Large """) with gr.Row(): prompt = gr.Text( label="プロンプト", show_label=False, max_lines=1, placeholder="作りたい画像の特徴を入力してください", container=False, ) run_button = gr.Button("実行", scale=0) result = gr.Image(label="結果", show_label=False) generated_prompt = gr.Textbox(label="生成に使ったプロンプト", show_label=False, interactive=False) with gr.Accordion("詳細設定", open=False): negative_prompt = gr.Text( label="ネガティブプロンプト", max_lines=1, placeholder="画像から排除したい要素を入力してください", ) seed = gr.Slider( label="乱数のシード", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="ランダム生成", value=True) with gr.Row(): width = gr.Slider( label="横", minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) height = gr.Slider( label="縦", minimum=256, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="プロンプトの忠実さ", minimum=0.0, maximum=10.0, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="推論回数", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, inputs = [prompt] ) gr.on( triggers=[run_button.click, prompt.submit, negative_prompt.submit], fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed, generated_prompt] ) demo.launch()