Tailor3D / openlrm /runners /train /base_trainer.py
alexzyqi's picture
20240706
52d68d4
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import math
import argparse
import shutil
import torch
import safetensors
from omegaconf import OmegaConf
from abc import abstractmethod
from contextlib import contextmanager
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from openlrm.utils.logging import configure_logger
from openlrm.utils.compile import configure_dynamo
from openlrm.runners.abstract import Runner
from collections import OrderedDict
from huggingface_hub import hf_hub_download
# def my_save_pre_hook(models, weights, output_dir):
# keep = ["_lora", "synthesizer", "front_back_conv"]
# for weight_dict in weights:
# keys_to_keep = [key for key in weight_dict if any(keep_str in key for keep_str in keep)]
# new_weight_dict = OrderedDict((key, weight_dict[key]) for key in keys_to_keep)
# weight_dict.clear()
# weight_dict.update(new_weight_dict)
from collections import OrderedDict
def my_save_pre_hook(models, weights, output_dir):
assert len(models) == len(weights), "Models and weights must correspond one-to-one"
filtered_weights_list = []
for model, model_weights in zip(models, weights):
filtered_weights = OrderedDict()
for name, param in model.named_parameters():
if param.requires_grad:
if name in model_weights:
filtered_weights[name] = model_weights[name]
filtered_weights_list.append(filtered_weights)
weights.clear()
weights.extend(filtered_weights_list)
logger = get_logger(__name__)
def parse_configs():
# Define argparse arguments
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./assets/config.yaml')
args, unknown = parser.parse_known_args()
# Load configuration file
cfg = OmegaConf.load(args.config)
# Override with command-line arguments
cli_cfg = OmegaConf.from_cli(unknown)
cfg = OmegaConf.merge(cfg, cli_cfg)
return cfg
class Trainer(Runner):
def __init__(self):
super().__init__()
self.cfg = parse_configs()
self.timestamp = time.strftime("%Y%m%d-%H%M%S")
self.accelerator = Accelerator(
mixed_precision=self.cfg.train.mixed_precision,
gradient_accumulation_steps=self.cfg.train.accum_steps,
log_with=tuple(self.cfg.logger.trackers),
project_config=ProjectConfiguration(
logging_dir=self.cfg.logger.tracker_root,
),
use_seedable_sampler=True,
kwargs_handlers=[
DistributedDataParallelKwargs(
find_unused_parameters=self.cfg.train.find_unused_parameters,
),
],
)
self.accelerator.register_save_state_pre_hook(my_save_pre_hook) # it is the save model hook.
set_seed(self.cfg.experiment.seed, device_specific=True)
with self.accelerator.main_process_first():
configure_logger(
stream_level=self.cfg.logger.stream_level,
log_level=self.cfg.logger.log_level,
file_path=os.path.join(
self.cfg.logger.log_root,
self.cfg.experiment.parent, self.cfg.experiment.child,
f"{self.timestamp}.log",
) if self.accelerator.is_main_process else None,
)
logger.info(self.accelerator.state, main_process_only=False, in_order=True)
configure_dynamo(dict(self.cfg.compile))
# attributes with defaults
self.model : torch.nn.Module = None
self.optimizer: torch.optim.Optimizer = None
self.scheduler: torch.optim.lr_scheduler.LRScheduler = None
self.train_loader: torch.utils.data.DataLoader = None
self.val_loader: torch.utils.data.DataLoader = None
self.N_max_global_steps: int = None
self.N_global_steps_per_epoch: int = None
self.global_step: int = 0
self.current_epoch: int = 0
def __enter__(self):
self.accelerator.init_trackers(
project_name=f"{self.cfg.experiment.parent}/{self.cfg.experiment.child}",
)
self.prepare_everything()
self.log_inital_info()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.accelerator.end_training()
@staticmethod
def control(option: str = None, synchronized: bool = False):
def decorator(func):
def wrapper(self, *args, **kwargs):
if option is None or hasattr(self.accelerator, option):
accelerated_func = getattr(self.accelerator, option)(func) if option is not None else func
result = accelerated_func(self, *args, **kwargs)
if synchronized:
self.accelerator.wait_for_everyone()
return result
else:
raise AttributeError(f"Accelerator has no attribute {option}")
return wrapper
return decorator
@contextmanager
def exec_in_order(self):
for rank in range(self.accelerator.num_processes):
try:
if self.accelerator.process_index == rank:
yield
finally:
self.accelerator.wait_for_everyone()
@property
def device(self):
return self.accelerator.device
@property
def is_distributed(self) -> bool:
return self.accelerator.num_processes > 1
def prepare_everything(self, is_dist_validation: bool = True):
# prepare with accelerator
if is_dist_validation:
self.model, self.optimizer, self.train_loader, self.val_loader = \
self.accelerator.prepare(
self.model, self.optimizer, self.train_loader, self.val_loader,
)
else:
self.model, self.optimizer, self.train_loader = \
self.accelerator.prepare(
self.model, self.optimizer, self.train_loader,
)
self.accelerator.register_for_checkpointing(self.scheduler)
# prepare stats
N_total_batch_size = self.cfg.train.batch_size * self.accelerator.num_processes * self.cfg.train.accum_steps
self.N_global_steps_per_epoch = math.ceil(len(self.train_loader) / self.cfg.train.accum_steps)
self.N_max_global_steps = self.N_global_steps_per_epoch * self.cfg.train.epochs
if self.cfg.train.debug_global_steps is not None:
logger.warning(f"Overriding max global steps from {self.N_max_global_steps} to {self.cfg.train.debug_global_steps}")
self.N_max_global_steps = self.cfg.train.debug_global_steps
logger.info(f"======== Statistics ========")
logger.info(f"** N_max_global_steps: {self.N_max_global_steps}")
logger.info(f"** N_total_batch_size: {N_total_batch_size}")
logger.info(f"** N_epochs: {self.cfg.train.epochs}")
logger.info(f"** N_global_steps_per_epoch: {self.N_global_steps_per_epoch}")
logger.debug(f"** Prepared loader length: {len(self.train_loader)}")
logger.info(f"** Distributed validation: {is_dist_validation}")
logger.info(f"============================")
logger.info(f"======== Trainable parameters ========")
logger.info(f"** Total: {sum(p.numel() for p in self.model.parameters() if p.requires_grad)}")
for sub_name, sub_module in self.accelerator.unwrap_model(self.model).named_children():
logger.info(f"** {sub_name}: {sum(p.numel() for p in sub_module.parameters() if p.requires_grad)}")
logger.info(f"=====================================")
self.accelerator.wait_for_everyone()
# load checkpoint or model
self.load_ckpt_or_auto_resume_(self.cfg)
# register hooks
self.register_hooks()
@abstractmethod
def register_hooks(self):
pass
def auto_resume_(self, cfg) -> bool:
ckpt_root = os.path.join(
cfg.saver.checkpoint_root,
cfg.experiment.parent, cfg.experiment.child,
)
if not os.path.exists(ckpt_root):
return False
ckpt_dirs = os.listdir(ckpt_root)
if len(ckpt_dirs) == 0:
return False
ckpt_dirs.sort()
latest_ckpt = ckpt_dirs[-1]
latest_ckpt_dir = os.path.join(ckpt_root, latest_ckpt)
logger.info(f"======== Auto-resume from {latest_ckpt_dir} ========")
self.accelerator.load_state(latest_ckpt_dir, strict=cfg.saver.load_model_func_kwargs.strict)
self.global_step = int(latest_ckpt)
self.current_epoch = self.global_step // self.N_global_steps_per_epoch
return True
def load_model_(self, cfg):
if cfg.saver.load_model.type == 'hugging_face':
repo_id, file_name = os.path.dirname(cfg.saver.load_model.url), os.path.basename(cfg.saver.load_model.url)
pretrain_model_path = hf_hub_download(repo_id=repo_id, filename=file_name)
logger.info(f"======== Loading pretrain model from hugging face {repo_id, file_name} ========")
safetensors.torch.load_model(
self.accelerator.unwrap_model(self.model),
pretrain_model_path,
**cfg.saver.load_model_func_kwargs
)
logger.info(f"======== Pretrain Model loaded ========")
return True
else:
logger.info(f"======== Loading model from {cfg.saver.load_model} ========")
safetensors.torch.load_model(
self.accelerator.unwrap_model(self.model),
cfg.saver.load_model,
strict=True,
)
logger.info(f"======== Model loaded ========")
return True
@control(synchronized=True)
def load_ckpt_or_auto_resume_(self, cfg):
# auto resume has higher priority, load model from path if auto resume is not available
# cfg.saver.auto_resume and cfg.saver.load_model
if cfg.saver.auto_resume:
successful_resume = self.auto_resume_(cfg)
if successful_resume:
if cfg.saver.load_model:
successful_load = self.load_model_(cfg)
if successful_load:
return
return
if cfg.saver.load_model:
successful_load = self.load_model_(cfg)
if successful_load:
return
logger.debug(f"======== No checkpoint or model is loaded ========")
@control('on_main_process', synchronized=True)
def save_checkpoint(self):
ckpt_dir = os.path.join(
self.cfg.saver.checkpoint_root,
self.cfg.experiment.parent, self.cfg.experiment.child,
f"{self.global_step:06d}",
)
self.accelerator.save_state(output_dir=ckpt_dir, safe_serialization=True)
logger.info(f"======== Saved checkpoint at global step {self.global_step} ========")
# manage stratified checkpoints
ckpt_dirs = os.listdir(os.path.dirname(ckpt_dir))
ckpt_dirs.sort()
max_ckpt = int(ckpt_dirs[-1])
ckpt_base = int(self.cfg.saver.checkpoint_keep_level)
ckpt_period = self.cfg.saver.checkpoint_global_steps
logger.debug(f"Checkpoint base: {ckpt_base}")
logger.debug(f"Checkpoint period: {ckpt_period}")
cur_order = ckpt_base ** math.floor(math.log(max_ckpt // ckpt_period, ckpt_base))
cur_idx = 0
while cur_order > 0:
cur_digit = max_ckpt // ckpt_period // cur_order % ckpt_base
while cur_idx < len(ckpt_dirs) and int(ckpt_dirs[cur_idx]) // ckpt_period // cur_order % ckpt_base < cur_digit:
if int(ckpt_dirs[cur_idx]) // ckpt_period % cur_order != 0:
shutil.rmtree(os.path.join(os.path.dirname(ckpt_dir), ckpt_dirs[cur_idx]))
logger.info(f"Removed checkpoint {ckpt_dirs[cur_idx]}")
cur_idx += 1
cur_order //= ckpt_base
@property
def global_step_in_epoch(self):
return self.global_step % self.N_global_steps_per_epoch
@abstractmethod
def _build_model(self):
pass
@abstractmethod
def _build_optimizer(self):
pass
@abstractmethod
def _build_scheduler(self):
pass
@abstractmethod
def _build_dataloader(self):
pass
@abstractmethod
def _build_loss_fn(self):
pass
@abstractmethod
def train(self):
pass
@abstractmethod
def evaluate(self):
pass
@staticmethod
def _get_str_progress(epoch: int = None, step: int = None):
if epoch is not None:
log_type = 'epoch'
log_progress = epoch
elif step is not None:
log_type = 'step'
log_progress = step
else:
raise ValueError('Either epoch or step must be provided')
return log_type, log_progress
@control('on_main_process')
def log_scalar_kwargs(self, epoch: int = None, step: int = None, split: str = None, **scalar_kwargs):
log_type, log_progress = self._get_str_progress(epoch, step)
split = f'/{split}' if split else ''
for key, value in scalar_kwargs.items():
self.accelerator.log({f'{key}{split}/{log_type}': value}, log_progress)
@control('on_main_process')
def log_images(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}):
for tracker in self.accelerator.trackers:
if hasattr(tracker, 'log_images'):
tracker.log_images(values, step=step, **log_kwargs.get(tracker.name, {}))
@control('on_main_process')
def log_optimizer(self, epoch: int = None, step: int = None, attrs: list[str] = [], group_ids: list[int] = []):
log_type, log_progress = self._get_str_progress(epoch, step)
assert self.optimizer is not None, 'Optimizer is not initialized'
if not attrs:
logger.warning('No optimizer attributes are provided, nothing will be logged')
if not group_ids:
logger.warning('No optimizer group ids are provided, nothing will be logged')
for attr in attrs:
assert attr in ['lr', 'momentum', 'weight_decay'], f'Invalid optimizer attribute {attr}'
for group_id in group_ids:
self.accelerator.log({f'opt/{attr}/{group_id}': self.optimizer.param_groups[group_id][attr]}, log_progress)
@control('on_main_process')
def log_inital_info(self):
assert self.model is not None, 'Model is not initialized'
assert self.optimizer is not None, 'Optimizer is not initialized'
assert self.scheduler is not None, 'Scheduler is not initialized'
self.accelerator.log({'Config': "```\n" + OmegaConf.to_yaml(self.cfg) + "\n```"})
self.accelerator.log({'Model': "```\n" + str(self.model) + "\n```"})
self.accelerator.log({'Optimizer': "```\n" + str(self.optimizer) + "\n```"})
self.accelerator.log({'Scheduler': "```\n" + str(self.scheduler) + "\n```"})
def run(self):
self.train()