Tailor3D / openlrm /datasets /objaverse.py
alexzyqi's picture
20240706
52d68d4
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Union
import random
import numpy as np
import torch
from megfile import smart_path_join, smart_open
from .base import BaseDataset
from .cam_utils import build_camera_standard, build_camera_principle, camera_normalization_objaverse
from ..utils.proxy import no_proxy
__all__ = ['ObjaverseDataset']
class ObjaverseDataset(BaseDataset):
def __init__(self, root_dirs: list[str], meta_path: str,
sample_side_views: int,
render_image_res_low: int, render_image_res_high: int, render_region_size: int,
source_image_res: int, normalize_camera: bool,
normed_dist_to_center: Union[float, str] = None, num_all_views: int = 32):
super().__init__(root_dirs, meta_path)
self.sample_side_views = sample_side_views # 3
self.render_image_res_low = render_image_res_low # 64
self.render_image_res_high = render_image_res_high # 192
self.render_region_size = render_region_size # 64
self.source_image_res = source_image_res # 224s
self.normalize_camera = normalize_camera # True
self.normed_dist_to_center = normed_dist_to_center # 'auto'
self.num_all_views = num_all_views
@staticmethod
def _load_pose(file_path):
pose = np.load(smart_open(file_path, 'rb'))
pose = torch.from_numpy(pose).float()
return pose
@no_proxy
def inner_get_item(self, idx):
"""
Loaded contents:
rgbs: [M, 3, H, W]
poses: [M, 3, 4], [R|t]
intrinsics: [3, 2], [[fx, fy], [cx, cy], [weight, height]]
"""
uid = self.uids[idx]
root_dir = self._locate_datadir(self.root_dirs, uid, locator="intrinsics.npy")
pose_dir = os.path.join(root_dir, uid, 'pose')
rgba_dir = os.path.join(root_dir, uid, 'rgba')
intrinsics_path = os.path.join(root_dir, uid, 'intrinsics.npy')
# load intrinsics
intrinsics = np.load(smart_open(intrinsics_path, 'rb'))
intrinsics = torch.from_numpy(intrinsics).float()
# sample views (incl. source view and side views)
sample_views = np.random.choice(range(self.num_all_views), self.sample_side_views + 1, replace=False)
poses, rgbs, bg_colors = [], [], []
source_image = None
for view in sample_views:
pose_path = smart_path_join(pose_dir, f'{view:03d}.npy')
rgba_path = smart_path_join(rgba_dir, f'{view:03d}.png')
pose = self._load_pose(pose_path)
bg_color = random.choice([0.0, 0.5, 1.0])
rgb = self._load_rgba_image(rgba_path, bg_color=bg_color)
poses.append(pose)
rgbs.append(rgb)
bg_colors.append(bg_color)
if source_image is None:
source_image = self._load_rgba_image(rgba_path, bg_color=1.0)
assert source_image is not None, "Really bad luck!"
poses = torch.stack(poses, dim=0)
rgbs = torch.cat(rgbs, dim=0)
if self.normalize_camera:
poses = camera_normalization_objaverse(self.normed_dist_to_center, poses)
# build source and target camera features
source_camera = build_camera_principle(poses[:1], intrinsics.unsqueeze(0)).squeeze(0)
render_camera = build_camera_standard(poses, intrinsics.repeat(poses.shape[0], 1, 1))
# adjust source image resolution
source_image = torch.nn.functional.interpolate(
source_image, size=(self.source_image_res, self.source_image_res), mode='bicubic', align_corners=True).squeeze(0)
source_image = torch.clamp(source_image, 0, 1)
# adjust render image resolution and sample intended rendering region
render_image_res = np.random.randint(self.render_image_res_low, self.render_image_res_high + 1)
render_image = torch.nn.functional.interpolate(
rgbs, size=(render_image_res, render_image_res), mode='bicubic', align_corners=True)
render_image = torch.clamp(render_image, 0, 1)
anchors = torch.randint(
0, render_image_res - self.render_region_size + 1, size=(self.sample_side_views + 1, 2))
crop_indices = torch.arange(0, self.render_region_size, device=render_image.device)
index_i = (anchors[:, 0].unsqueeze(1) + crop_indices).view(-1, self.render_region_size, 1)
index_j = (anchors[:, 1].unsqueeze(1) + crop_indices).view(-1, 1, self.render_region_size)
batch_indices = torch.arange(self.sample_side_views + 1, device=render_image.device).view(-1, 1, 1)
cropped_render_image = render_image[batch_indices, :, index_i, index_j].permute(0, 3, 1, 2)
return {
'uid': uid,
'source_camera': source_camera,
'render_camera': render_camera,
'source_image': source_image,
'render_image': cropped_render_image,
'render_anchors': anchors,
'render_full_resolutions': torch.tensor([[render_image_res]], dtype=torch.float32).repeat(self.sample_side_views + 1, 1),
'render_bg_colors': torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1),
}