File size: 8,202 Bytes
52d68d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
from typing import Union
import random
import numpy as np
import torch
from megfile import smart_path_join, smart_open

from .cam_utils import build_camera_standard, build_camera_principle, camera_normalization_objaverse
from ..utils.proxy import no_proxy
from .objaverse import ObjaverseDataset
from .back_transform.back_transform import transform_back_image

from PIL import Image
from torchvision import transforms

__all__ = ['GobjaverseDataset']

def opposite_view(i):
   if 0 <= i <= 24:
       return (i + 12) % 24
   elif 27 <= i <= 39:
       return ((i - 27) + 6) % 12 + 27
   else:
       raise ValueError("Input number must be between 0-24 or 27-39.")

def get_random_views(rgba_dir, num_views=4):
    all_files = [f for f in os.listdir(rgba_dir) if f.endswith('.png')]
    view_numbers = [int(os.path.splitext(f)[0]) for f in all_files]
    selected_views = random.sample(view_numbers, num_views)
    return np.array(selected_views)

class GobjaverseDataset(ObjaverseDataset):

    def __init__(self, root_dirs: list[str], meta_path: str,
                 sample_side_views: int,
                 render_image_res_low: int, render_image_res_high: int, render_region_size: int,
                 source_image_res: int, normalize_camera: bool,
                 normed_dist_to_center: Union[float, str] = None, num_all_views: int = 32):
        super().__init__(
            root_dirs, meta_path,
            sample_side_views,
            render_image_res_low,
            render_image_res_high,
            render_region_size,
            source_image_res,
            normalize_camera,
            normed_dist_to_center,
            num_all_views,
            )

        self.back_transforms = transform_back_image()

    # This is for gobjaverse and objaverse_mengchen
    @staticmethod
    def _load_pose_txt(file_path):  # load .txt         #!!!
        with open(file_path, 'r') as file:
            lines = file.readlines()
        pose_data = np.array([list(map(float, line.split())) for line in lines], dtype=np.float32)
        pose = torch.from_numpy(pose_data).reshape(4, 4)     # [1. 16] -> [4, 4] -> [3, 4]
        opengl2opencv = np.array([
                    [1,  0,  0, 0], 
                    [0, -1,  0, 0], 
                    [0,  0, -1, 0], 
                    [0,  0,  0, 1]
                ], dtype=np.float32)
        # This is the camera pose in OpenCV format.
        pose = np.matmul(pose, opengl2opencv)
        return pose[:3, :] # [4, 4] -> [3, 4]

    @staticmethod
    def _load_rgba_image_transform(file_path, bg_color: float = 1.0, extra_transforms=None): #!!!
        ''' Load and blend RGBA image to RGB with certain background, 0-1 scaled '''
        rgba = np.array(Image.open(smart_open(file_path, 'rb')) )                            # (512, 512, 4)
        rgba = torch.from_numpy(rgba).float() / 255.0
        rgba = rgba.permute(2, 0, 1).unsqueeze(0)
        rgb = rgba[:, :3, :, :] * rgba[:, 3:4, :, :] + bg_color * (1 - rgba[:, 3:, :, :])
        if extra_transforms is not None:
            rgb = extra_transforms(
                transforms.ToPILImage()(rgb.squeeze())
            ).unsqueeze(0)
        return rgb                                                                          # [1, 3, 512, 512]

    @no_proxy
    def inner_get_item(self, idx):
        """
        Loaded contents:
            rgbs: [M, 3, H, W]
            poses: [M, 3, 4], [R|t]
            intrinsics: [3, 2], [[fx, fy], [cx, cy], [weight, height]]
        """
        uid = self.uids[idx]
        root_dir = self._locate_datadir(self.root_dirs, uid, locator="pose")
        
        pose_dir = os.path.join(root_dir, uid, 'pose')
        rgba_dir = os.path.join(root_dir, uid, 'rgb')

        # only one intrinsics
        intrinsics = torch.tensor([[384, 384], [256, 256], [512, 512]], dtype=torch.float) 

        # sample views (incl. source view and side views)
        sample_views = get_random_views(rgba_dir, num_views=self.sample_side_views) 
        source_image_view_back = opposite_view(sample_views[0])
        sample_views = np.insert(sample_views, 1, source_image_view_back)

        poses, rgbs, bg_colors = [], [], []
        source_image = None
        for view in sample_views:
            pose_path = smart_path_join(pose_dir, f'{view:03d}.txt')
            rgba_path = smart_path_join(rgba_dir, f'{view:03d}.png')
            pose = self._load_pose_txt(pose_path) #!!!
            bg_color = random.choice([0.0, 0.5, 1.0])
            rgb = self._load_rgba_image(rgba_path, bg_color=bg_color)
            poses.append(pose)
            rgbs.append(rgb)
            bg_colors.append(bg_color)
            if source_image is None:
                source_image = self._load_rgba_image(rgba_path, bg_color=1.0)
        assert source_image is not None, "Really bad luck!"
        poses = torch.stack(poses, dim=0)
        rgbs = torch.cat(rgbs, dim=0)

        #!!! lora for the backview
        source_image_back = self._load_rgba_image_transform(smart_path_join(rgba_dir, f'{sample_views[1]:03d}.png'), bg_color=bg_color)

        if self.normalize_camera:
            poses = camera_normalization_objaverse(self.normed_dist_to_center, poses)

        # build source and target camera features
        source_camera = build_camera_principle(poses[:1], intrinsics.unsqueeze(0)).squeeze(0)
        render_camera = build_camera_standard(poses, intrinsics.repeat(poses.shape[0], 1, 1))

        # adjust source image resolution
        source_image = torch.nn.functional.interpolate(
            source_image, size=(self.source_image_res, self.source_image_res), mode='bicubic', align_corners=True).squeeze(0)
        source_image = torch.clamp(source_image, 0, 1)

        #!!! adjust source_image_back resolution
        source_image_back = torch.nn.functional.interpolate(
            source_image_back, size=(self.source_image_res, self.source_image_res), mode='bicubic', align_corners=True).squeeze(0)
        source_image_back = torch.clamp(source_image_back, 0, 1)

        # adjust render image resolution and sample intended rendering region
        render_image_res = np.random.randint(self.render_image_res_low, self.render_image_res_high + 1)
        render_image = torch.nn.functional.interpolate(
            rgbs, size=(render_image_res, render_image_res), mode='bicubic', align_corners=True)
        render_image = torch.clamp(render_image, 0, 1)
        anchors = torch.randint(
            0, render_image_res - self.render_region_size + 1, size=(self.sample_side_views + 1, 2))
        crop_indices = torch.arange(0, self.render_region_size, device=render_image.device)
        index_i = (anchors[:, 0].unsqueeze(1) + crop_indices).view(-1, self.render_region_size, 1)
        index_j = (anchors[:, 1].unsqueeze(1) + crop_indices).view(-1, 1, self.render_region_size)
        batch_indices = torch.arange(self.sample_side_views + 1, device=render_image.device).view(-1, 1, 1)
        cropped_render_image = render_image[batch_indices, :, index_i, index_j].permute(0, 3, 1, 2)

        return {
            'uid': uid,
            'source_camera': source_camera,
            'render_camera': render_camera,
            'source_image': source_image,
            'render_image': cropped_render_image,
            'source_image_back': source_image_back, #!!!
            'render_anchors': anchors,
            'render_full_resolutions': torch.tensor([[render_image_res]], dtype=torch.float32).repeat(self.sample_side_views + 1, 1),
            'render_bg_colors': torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1),
        }