Spaces:
Sleeping
Sleeping
File size: 2,372 Bytes
52d68d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import json
import numpy as np
import torch
from PIL import Image
from megfile import smart_open, smart_path_join, smart_exists
class BaseDataset(torch.utils.data.Dataset, ABC):
def __init__(self, root_dirs: list[str], meta_path: str):
super().__init__()
self.root_dirs = root_dirs
self.uids = self._load_uids(meta_path)
def __len__(self):
return len(self.uids)
@abstractmethod
def inner_get_item(self, idx):
pass
def __getitem__(self, idx):
try:
return self.inner_get_item(idx)
except Exception as e:
print(f"[DEBUG-DATASET] Error when loading {self.uids[idx]}")
# return self.__getitem__(idx+1)
raise e
@staticmethod
def _load_uids(meta_path: str):
# meta_path is a json file
with open(meta_path, 'r') as f:
uids = json.load(f)
return uids
@staticmethod
def _load_rgba_image(file_path, bg_color: float = 1.0):
''' Load and blend RGBA image to RGB with certain background, 0-1 scaled '''
rgba = np.array(Image.open(smart_open(file_path, 'rb')))
rgba = torch.from_numpy(rgba).float() / 255.0
rgba = rgba.permute(2, 0, 1).unsqueeze(0)
rgb = rgba[:, :3, :, :] * rgba[:, 3:4, :, :] + bg_color * (1 - rgba[:, 3:, :, :])
rgba[:, :3, ...] * rgba[:, 3:, ...] + (1 - rgba[:, 3:, ...])
return rgb
@staticmethod
def _locate_datadir(root_dirs, uid, locator: str):
for root_dir in root_dirs:
datadir = smart_path_join(root_dir, uid, locator)
if smart_exists(datadir):
return root_dir
raise FileNotFoundError(f"Cannot find valid data directory for uid {uid}")
|