Spaces:
Sleeping
Sleeping
File size: 2,234 Bytes
06945e5 782fcf5 06945e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
translator_1 = pipeline("translation", model = "penpen/novel-zh-en", max_time = 7)
translator_2_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_1.2B")
translator_2_tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_1.2B")
translator_3_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
translator_3_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
def model_1(text):
return translator_1(text)[0]["translation_text"]
def model_2(text):
translator_2_tokenizer.src_lang = "zh"
encoded_zh = translator_2_tokenizer(text, return_tensors = "pt", truncation = True, max_length = 512)
generated_tokens = translator_2_model.generate(**encoded_zh, forced_bos_token_id = translator_2_tokenizer.get_lang_id("en"))
return translator_2_tokenizer.batch_decode(generated_tokens, skip_special_tokens = True)[0]
def model_3(text):
batch = translator_3_tokenizer(text, return_tensors = "pt", truncation = True, max_length = 512)
generated_tokens = translator_3_model.generate(**batch)
return translator_3_tokenizer.batch_decode(generated_tokens, skip_special_tokens = True)[0]
def on_click(text):
print('input: ', text)
res_1 = model_1(text)
print('model_1: ', res_1)
res_2 = model_2(text)
print('model_2: ', res_2)
res_3 = model_3(text)
print('model_3: ', res_3)
print('----------------------------')
return res_1, res_2, res_3
with gr.Blocks() as block:
gr.Markdown("<center><h1>中文翻译英文对比</h1></center>")
tb_input = gr.Textbox(label = "输入", placeholder = "输入中文句子", lines = 1)
btn = gr.Button("翻译", variant = 'primary')
tb_trans_1 = gr.Textbox(label = "模型1(penpen/novel-zh-en)")
tb_trans_2 = gr.Textbox(label = "模型2(facebook/m2m100_1.2B)")
tb_trans_3 = gr.Textbox(label = "模型3(Helsinki-NLP/opus-mt-zh-en)")
btn.click(fn = on_click, inputs = tb_input, outputs = [tb_trans_1, tb_trans_2, tb_trans_3])
gr.close_all()
block.queue(concurrency_count = 5)
block.launch() |