Spaces:
Runtime error
Runtime error
File size: 5,246 Bytes
4f65819 a0e96fb 4f65819 0e80fa1 4f65819 a0e96fb 4f65819 f61f078 4f65819 a0e96fb 4f65819 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import torch
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import AutoTokenizer, AutoModel
from duckduckgo_search import ddg
import time
import gradio as gr
import gc
def best_device():
if torch.cuda.is_available():
return 'cuda'
if torch.backends.mps.is_available():
return 'mps'
return 'cpu'
device = best_device()
embeddings = HuggingFaceEmbeddings(model_name = 'GanymedeNil/text2vec-large-chinese', model_kwargs={'device': device})
local_db = FAISS.load_local('./text2vec/store', embeddings)
model_name = 'THUDM/chatglm-6b-int4'
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code = True)
if device == 'cuda':
model = AutoModel.from_pretrained(model_name, trust_remote_code = True).half().cuda().eval()
elif device == 'mps':
model = AutoModel.from_pretrained(model_name, trust_remote_code = True).half().to("mps").eval()
else:
model = AutoModel.from_pretrained(model_name, trust_remote_code = True).float().eval()
def local_query(text, top_k = 3):
docs_and_scores = local_db.similarity_search_with_score(text)
docs_and_scores.sort(key = lambda x : x[1])
local_content = ''
count = 0
for doc in docs_and_scores:
if count < top_k:
local_content += doc[0].page_content.replace(' ', '') + '\n'
count += 1
return local_content
def web_search(text, limit = 3):
web_content = ''
try:
results = ddg(text)
if results:
count = 0
for result in results:
if count < limit:
web_content += result['body'] + "\n"
count += 1
except Exception as e:
print(f"网络检索异常:{text}")
return web_content
def ask_question(question, local_content = '', web_content = ''):
question = f'简洁和专业的来回答我的问题。\n如果你不知道答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。\n我的问题是:\n{question}'
if len(web_content) > 0:
if len(local_content) > 0:
question = f'基于以下已知信息,简洁和专业的来回答我的问题。\n如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。\n已知信息是:\n{web_content}\n{local_content}\n我的问题是:\n{question}'
else:
question = f'基于以下已知信息,简洁和专业的来回答我的问题。\n如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。\n已知信息是:\n{web_content}\n我的问题是:\n{question}'
elif len(local_content) > 0:
question = f'基于以下已知信息,简洁和专业的来回答我的问题。\n如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。\n已知信息是:\n{local_content}\n我的问题是:\n{question}'
response, history = model.chat(tokenizer, question, history = [], max_length = 10000, temperature = 0.1)
return response
def on_click(question, kb_types):
gc.collect()
if best_device() == 'cuda':
torch.cuda.empty_cache()
print("问题 [" + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + "]: \n", question + "\n\n")
local_content = ''
if '结合本地数据' in kb_types:
local_content = local_query(question, 2)
web_content = ''
if '结合网络检索' in kb_types:
web_content = web_search(question, 3)
result = ask_question(question, local_content, web_content)
if len(local_content) > 0:
if len(web_content) > 0:
print('结合本地数据和网络检索 [' + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ']: ')
else:
print('结合本地数据 [' + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ']: ')
elif len(web_content) > 0:
print('结合网络检索 [' + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ']: ')
else:
print('仅用模型数据 [' + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ']: ')
print(f'{result}\n\n----------------------------')
gc.collect()
if best_device() == 'cuda':
torch.cuda.empty_cache()
return result
with gr.Blocks() as block:
gr.Markdown('<center><h1>LLM问答机器人测试</h1></center>')
cg_type = gr.CheckboxGroup(['结合本地数据', '结合网络检索'], label = '知识库类型(不勾选则仅用模型数据):')
tb_input = gr.Textbox(label = '输入问题(本地数据只有中国历史知识):')
btn = gr.Button("测试", variant = 'primary')
tb_output = gr.Textbox(label = 'AI回答:')
btn.click(fn = on_click, inputs = [tb_input, cg_type], outputs = tb_output)
block.queue(concurrency_count = 1)
block.launch() |