import os import sys sys.path.append(sys.path[0].replace('scripts', '')) from urllib.request import urlretrieve import pandas as pd from config.data_paths import PROCESSED_DATA_PATH import re from scripts.utils import load_config PROMPTS_URL = load_config()['data'].get('prompts_corpus_url', 'https://huggingface.co./datasets/poloclub/diffusiondb/resolve/main/metadata.parquet') def preprocess_text(text: str) -> str: """ Text preprocessing function. Args: text: Raw text prompt. Returns: Preprocessed text. """ text = text.strip() # Remove leading/trailing whitespace text = re.sub(r'\s+', ' ', text) # Replace multiple spaces with a single space return text def clean_corpus(): """ Utility function to clean and preprocess the prompt corpus. """ if not os.path.isfile(os.path.join(PROCESSED_DATA_PATH, 'prompt_corpus_clean.parquet')): # to speed up the process os.makedirs(PROCESSED_DATA_PATH, exist_ok=True) df = pd.read_parquet(PROMPTS_URL).sample(5000, random_state=123) assert 'prompt' in df.columns, "Parquet file must contain a 'prompt' column." df = df[df['prompt'].notna()][['prompt']] # drop missing rows df['prompt'] = df['prompt'].apply(preprocess_text) # preprocess each prompt df = df.drop_duplicates() # drop duplicates df.to_parquet(os.path.join(PROCESSED_DATA_PATH, 'prompt_corpus_clean.parquet'))