Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
4 |
+
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
5 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
6 |
+
os.environ["WANDB_PROJECT"] = "gliner_finetuning"
|
7 |
+
# os.environ["WANDB_LOG_MODEL"] = "true"
|
8 |
+
os.environ["WANDB_WATCH"] = "none"
|
9 |
+
import argparse
|
10 |
+
import random
|
11 |
+
from glob import glob
|
12 |
+
import json
|
13 |
+
|
14 |
+
from transformers import AutoTokenizer, EarlyStoppingCallback
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from gliner import GLiNERConfig, GLiNER
|
18 |
+
from gliner.training import Trainer, TrainingArguments
|
19 |
+
from gliner.data_processing.collator import DataCollatorWithPadding, DataCollator
|
20 |
+
from gliner.utils import load_config_as_namespace
|
21 |
+
from gliner.data_processing import WordsSplitter, GLiNERDataset
|
22 |
+
from utils import GLiNERConfigArgs
|
23 |
+
|
24 |
+
if __name__ == "__main__":
|
25 |
+
parser = argparse.ArgumentParser()
|
26 |
+
parser.add_argument("--config", type=str, default="config/config.yaml")
|
27 |
+
parser.add_argument("--log_dir", type=str, default="data/models/")
|
28 |
+
parser.add_argument("--compile_model", type=bool, default=False)
|
29 |
+
parser.add_argument("--freeze_language_model", type=bool, default=False)
|
30 |
+
parser.add_argument("--new_data_schema", type=bool, default=False)
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
device = (
|
34 |
+
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
35 |
+
)
|
36 |
+
|
37 |
+
config: GLiNERConfigArgs = load_config_as_namespace(args.config)
|
38 |
+
config.log_dir = args.log_dir
|
39 |
+
|
40 |
+
print("Start loading dataset...")
|
41 |
+
|
42 |
+
files = glob(os.path.join(config.train_data))
|
43 |
+
data = [json.load(open(f, "r")) for f in files]
|
44 |
+
train_data = sum(data, start=[])
|
45 |
+
|
46 |
+
files = glob(os.path.join(config.val_data_dir))
|
47 |
+
data = [json.load(open(f, "r")) for f in files]
|
48 |
+
test_data = sum(data, start=[])
|
49 |
+
|
50 |
+
random.shuffle(train_data)
|
51 |
+
|
52 |
+
print("Dataset is splitted...", len(train_data), len(test_data))
|
53 |
+
|
54 |
+
if config.prev_path is not None:
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(config.prev_path)
|
56 |
+
model = GLiNER.from_pretrained(config.prev_path)
|
57 |
+
model_config = model.config
|
58 |
+
else:
|
59 |
+
model_config = GLiNERConfig(**vars(config))
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name)
|
61 |
+
|
62 |
+
words_splitter = WordsSplitter(model_config.words_splitter_type)
|
63 |
+
|
64 |
+
model = GLiNER(model_config, tokenizer=tokenizer, words_splitter=words_splitter)
|
65 |
+
|
66 |
+
if not config.labels_encoder:
|
67 |
+
model_config.class_token_index = len(tokenizer)
|
68 |
+
tokenizer.add_tokens(
|
69 |
+
[model_config.ent_token, model_config.sep_token], special_tokens=True
|
70 |
+
)
|
71 |
+
model_config.vocab_size = len(tokenizer)
|
72 |
+
model.resize_token_embeddings(
|
73 |
+
[model_config.ent_token, model_config.sep_token],
|
74 |
+
set_class_token_index=False,
|
75 |
+
add_tokens_to_tokenizer=False,
|
76 |
+
)
|
77 |
+
|
78 |
+
if args.compile_model:
|
79 |
+
torch.set_float32_matmul_precision("high")
|
80 |
+
model.to(device)
|
81 |
+
model.compile_for_training()
|
82 |
+
|
83 |
+
if args.freeze_language_model:
|
84 |
+
model.model.token_rep_layer.bert_layer.model.requires_grad_(False)
|
85 |
+
else:
|
86 |
+
model.model.token_rep_layer.bert_layer.model.requires_grad_(True)
|
87 |
+
|
88 |
+
if args.new_data_schema:
|
89 |
+
train_dataset = GLiNERDataset(
|
90 |
+
train_data, model_config, tokenizer, words_splitter
|
91 |
+
)
|
92 |
+
test_dataset = GLiNERDataset(test_data, model_config, tokenizer, words_splitter)
|
93 |
+
data_collator = DataCollatorWithPadding(model_config)
|
94 |
+
else:
|
95 |
+
train_dataset = train_data
|
96 |
+
test_dataset = test_data
|
97 |
+
data_collator = DataCollator(
|
98 |
+
model.config, data_processor=model.data_processor, prepare_labels=True
|
99 |
+
)
|
100 |
+
|
101 |
+
save_steps = int(0.5 * len(train_dataset) // config.train_batch_size)
|
102 |
+
|
103 |
+
training_args = TrainingArguments(
|
104 |
+
output_dir=config.log_dir,
|
105 |
+
learning_rate=float(config.lr_encoder),
|
106 |
+
weight_decay=float(config.weight_decay_encoder),
|
107 |
+
others_lr=float(config.lr_others),
|
108 |
+
others_weight_decay=float(config.weight_decay_other),
|
109 |
+
lr_scheduler_type=config.scheduler_type,
|
110 |
+
warmup_ratio=config.warmup_ratio,
|
111 |
+
per_device_train_batch_size=config.train_batch_size,
|
112 |
+
per_device_eval_batch_size=config.train_batch_size,
|
113 |
+
max_grad_norm=config.max_grad_norm,
|
114 |
+
max_steps=config.num_steps,
|
115 |
+
evaluation_strategy=config.eval_strategy,
|
116 |
+
save_strategy=config.save_strategy,
|
117 |
+
save_steps=save_steps,
|
118 |
+
logging_steps=save_steps // 2,
|
119 |
+
save_total_limit=config.save_total_limit,
|
120 |
+
dataloader_num_workers=8,
|
121 |
+
use_cpu=False,
|
122 |
+
report_to="wandb",
|
123 |
+
bf16=True,
|
124 |
+
load_best_model_at_end=True,
|
125 |
+
)
|
126 |
+
|
127 |
+
trainer = Trainer(
|
128 |
+
model=model,
|
129 |
+
args=training_args,
|
130 |
+
train_dataset=train_dataset,
|
131 |
+
eval_dataset=test_dataset,
|
132 |
+
tokenizer=tokenizer,
|
133 |
+
data_collator=data_collator,
|
134 |
+
callbacks=[EarlyStoppingCallback(3)],
|
135 |
+
)
|
136 |
+
trainer.train()
|