alexkueck commited on
Commit
52a97be
·
1 Parent(s): 9e85ff2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -25
app.py CHANGED
@@ -21,31 +21,7 @@ def tokenize_function(examples):
21
  return tokenizer(examples["text"])
22
 
23
 
24
- #Funktion, die den gegebenen Text aus dem Datenset gruppiert
25
- def group_texts(examples):
26
- # Concatenate all texts.
27
- concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
28
- total_length = len(concatenated_examples[list(examples.keys())[0]])
29
- # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
30
- # customize this part to your needs.
31
- total_length = (total_length // block_size) * block_size
32
- # Split by chunks of max_len.
33
- result = {
34
- k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
35
- for k, t in concatenated_examples.items()
36
- }
37
- result["labels"] = result["input_ids"].copy()
38
- return result
39
-
40
- #Funktion, die der trainer braucht, um das Training zu evaluieren - mit einer Metrik
41
- def compute_metrics(eval_pred):
42
- #Metrik berechnen, um das training messen zu können - wird es besser???
43
- metric = evaluate.load("accuracy") #3 Arten von gegebener Metrik: f1 oder roc_auc oder accuracy
44
- logits, labels = eval_pred
45
- predictions = np.argmax(logits, axis=-1)
46
- #Call compute on metric to calculate the accuracy of your predictions.
47
- #Before passing your predictions to compute, you need to convert the predictions to logits (remember all Transformers models return logits):
48
- return metric.compute(predictions=predictions, references=labels)
49
 
50
  #neues Model testen nach dem Training
51
  ########################################################################
 
21
  return tokenizer(examples["text"])
22
 
23
 
24
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  #neues Model testen nach dem Training
27
  ########################################################################