Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
import requests
|
2 |
-
import gradio as gr
|
3 |
-
import bs4
|
4 |
from bs4 import BeautifulSoup
|
|
|
|
|
5 |
|
6 |
|
7 |
-
|
8 |
-
API_TOKEN = "votre_token_api"
|
9 |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
10 |
-
headers = {"Authorization": f"Bearer {
|
|
|
|
|
|
|
11 |
|
12 |
def query(payload):
|
13 |
response = requests.post(API_URL, headers=headers, json=payload)
|
@@ -15,14 +17,14 @@ def query(payload):
|
|
15 |
|
16 |
def analyze_sentiment(text):
|
17 |
output = query({
|
18 |
-
"inputs": f'''
|
19 |
-
|
20 |
-
you are going to analyse the prompt that
|
21 |
-
|
22 |
-
|
23 |
{text}
|
24 |
-
|
25 |
-
|
26 |
'''
|
27 |
})
|
28 |
|
@@ -35,38 +37,48 @@ you are going to analyse the prompt that i'll give to you and tell me if they ar
|
|
35 |
return "AI dev"
|
36 |
else:
|
37 |
return "autre"
|
|
|
38 |
|
39 |
def scrape_and_analyze(url):
|
40 |
try:
|
41 |
response = requests.get(url)
|
|
|
|
|
|
|
42 |
soup = BeautifulSoup(response.text, 'html.parser')
|
43 |
|
44 |
# Ajustez ce sélecteur selon la structure du site cible
|
45 |
-
posts = soup.find_all('div', class_='
|
46 |
|
47 |
categories = {"chat bot": 0, "AI dev": 0, "autre": 0}
|
|
|
|
|
48 |
|
49 |
for post in posts:
|
50 |
-
|
|
|
|
|
|
|
51 |
category = analyze_sentiment(content)
|
52 |
categories[category] += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
result
|
56 |
-
|
57 |
-
|
58 |
-
result += f"autre : {categories['autre']}"
|
59 |
|
60 |
return result
|
61 |
except Exception as e:
|
62 |
return f"Une erreur s'est produite : {str(e)}"
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
inputs="text",
|
67 |
-
outputs="text",
|
68 |
-
title="Analyse de posts de blog",
|
69 |
-
description="Entrez l'URL d'un blog pour analyser ses posts."
|
70 |
-
)
|
71 |
|
72 |
-
iface.launch()
|
|
|
1 |
import requests
|
|
|
|
|
2 |
from bs4 import BeautifulSoup
|
3 |
+
import gradio as gr
|
4 |
+
import os
|
5 |
|
6 |
|
7 |
+
api_token = os.environ.get("TOKEN")
|
|
|
8 |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
9 |
+
headers = {"Authorization": f"Bearer {api_token}"}
|
10 |
+
|
11 |
+
url = "https://huggingface.co/posts"
|
12 |
+
|
13 |
|
14 |
def query(payload):
|
15 |
response = requests.post(API_URL, headers=headers, json=payload)
|
|
|
17 |
|
18 |
def analyze_sentiment(text):
|
19 |
output = query({
|
20 |
+
"inputs": f'''
|
21 |
+
system
|
22 |
+
you are going to analyse the prompt that I'll give to you and tell me if they are either talking about "chat bot", "AI dev", or something else.
|
23 |
+
|
24 |
+
user
|
25 |
{text}
|
26 |
+
|
27 |
+
assistant
|
28 |
'''
|
29 |
})
|
30 |
|
|
|
37 |
return "AI dev"
|
38 |
else:
|
39 |
return "autre"
|
40 |
+
return "autre"
|
41 |
|
42 |
def scrape_and_analyze(url):
|
43 |
try:
|
44 |
response = requests.get(url)
|
45 |
+
if response.status_code != 200:
|
46 |
+
return f"Erreur lors de la requête : {response.status_code}"
|
47 |
+
|
48 |
soup = BeautifulSoup(response.text, 'html.parser')
|
49 |
|
50 |
# Ajustez ce sélecteur selon la structure du site cible
|
51 |
+
posts = soup.find_all('div', class_='cursor-pointer')
|
52 |
|
53 |
categories = {"chat bot": 0, "AI dev": 0, "autre": 0}
|
54 |
+
total_posts = 0
|
55 |
+
result = ""
|
56 |
|
57 |
for post in posts:
|
58 |
+
total_posts += 1
|
59 |
+
content = post.find('div', class_='relative').text.strip() if post.find('div', class_='relative') else "Pas de contenu"
|
60 |
+
|
61 |
+
# Analyse du texte
|
62 |
category = analyze_sentiment(content)
|
63 |
categories[category] += 1
|
64 |
+
|
65 |
+
# Affichage en temps réel
|
66 |
+
print(f"Post {total_posts} analysé. Catégorie : {category}")
|
67 |
+
print(f"Compteurs actuels : {categories}")
|
68 |
+
print("---")
|
69 |
+
|
70 |
+
# Ajout des résultats à la chaîne finale
|
71 |
+
result += f"Post {total_posts} : Catégorie {category}\n"
|
72 |
|
73 |
+
# Résultat final
|
74 |
+
result += f"\nTotal des posts analysés : {total_posts}\n"
|
75 |
+
for cat, count in categories.items():
|
76 |
+
result += f"{cat} : {count}\n"
|
|
|
77 |
|
78 |
return result
|
79 |
except Exception as e:
|
80 |
return f"Une erreur s'est produite : {str(e)}"
|
81 |
|
82 |
+
result = scrape_and_analyze(url)
|
83 |
+
print(result)
|
|
|
|
|
|
|
|
|
|
|
84 |
|
|