Spaces:
Runtime error
Runtime error
File size: 6,821 Bytes
a903e67 fbf6114 1245f76 1f04f7b a903e67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# -*- coding: utf-8 -*-
import os
import numpy as np
from glob import glob
import matplotlib.pyplot as plt
import matplotlib
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import backend as K
import pandas as pd
import gc
import random
import math
import glob
import torch
import gradio as gr
from PIL import Image
import cv2
classes = ['None','building','pervious surface','impervious surface','bare soil','water','coniferous','deciduous','brushwood','vineyard','herbaceous vegetation','agricultural land','plowed land']
id2label = pd.DataFrame(classes)[0].to_dict()
print(id2label)
label2id = {v: k for k, v in id2label.items()}
num_labels = len(id2label)
from transformers import SegformerForSemanticSegmentation, SegformerFeatureExtractor
segformer_b0_rgb_model = SegformerForSemanticSegmentation.from_pretrained("alanoix/segformer_b0_flair_one",
num_labels=len(id2label),
id2label=id2label,
label2id=label2id)
segformer_rgb_feature_extractor = SegformerFeatureExtractor(ignore_index=0, reduce_labels=False, do_resize=False, do_rescale=False, do_normalize=False)
segformer_b0_rgb_model= torch.quantization.quantize_dynamic(segformer_b0_rgb_model, {torch.nn.Linear}, dtype=torch.qint8)
import albumentations as aug
MEAN = np.array([0.44050665, 0.45704361, 0.42254708])
STD = np.array([0.20264351, 0.1782405 , 0.17575739])
test_transform = aug.Compose([
aug.Normalize(mean=MEAN, std=STD),
])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
segformer_b0_rgb_model = segformer_b0_rgb_model.to(device)
class_colors = [(random.randint(0, 255), random.randint(
0, 255), random.randint(0, 255)) for _ in range(5000)]
# Default IMAGE_ORDERING = channels_last
IMAGE_ORDERING = "channels_last"
def get_colored_segmentation_image(seg_arr, n_classes, colors=class_colors):
output_height = seg_arr.shape[0]
output_width = seg_arr.shape[1]
seg_img = np.zeros((output_height, output_width, 3))
for c in range(n_classes):
seg_arr_c = seg_arr[:, :] == c
seg_img[:, :, 0] += ((seg_arr_c)*(colors[c][0])).astype('uint8')
seg_img[:, :, 1] += ((seg_arr_c)*(colors[c][1])).astype('uint8')
seg_img[:, :, 2] += ((seg_arr_c)*(colors[c][2])).astype('uint8')
return seg_img
def get_legends(class_names, colors=class_colors):
n_classes = len(class_names)
legend = np.zeros(((len(class_names) * 25) + 25, 125, 3),
dtype="uint8") + 255
class_names_colors = enumerate(zip(class_names[:n_classes],
colors[:n_classes]))
for (i, (class_name, color)) in class_names_colors:
color = [int(c) for c in color]
cv2.putText(legend, class_name, (5, (i * 25) + 17),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 0), 1)
cv2.rectangle(legend, (100, (i * 25)), (125, (i * 25) + 25),
tuple(color), -1)
return legend
def overlay_seg_image(inp_img, seg_img):
orininal_h = inp_img.shape[0]
orininal_w = inp_img.shape[1]
seg_img = cv2.resize(seg_img, (orininal_w, orininal_h), interpolation=cv2.INTER_NEAREST)
fused_img = (inp_img/2 + seg_img/2).astype('uint8')
return fused_img
def concat_lenends(seg_img, legend_img):
new_h = np.maximum(seg_img.shape[0], legend_img.shape[0])
new_w = seg_img.shape[1] + legend_img.shape[1]
out_img = np.zeros((new_h, new_w, 3)).astype('uint8') + legend_img[0, 0, 0]
out_img[:legend_img.shape[0], : legend_img.shape[1]] = np.copy(legend_img)
out_img[:seg_img.shape[0], legend_img.shape[1]:] = np.copy(seg_img)
return out_img
def visualize_segmentation(seg_arr, inp_img=None, n_classes=None,
colors=class_colors, class_names=None,
overlay_img=False, show_legends=False,
prediction_width=None, prediction_height=None):
if n_classes is None:
n_classes = np.max(seg_arr)
seg_img = get_colored_segmentation_image(seg_arr, n_classes, colors=colors)
if inp_img is not None:
original_h = inp_img.shape[0]
original_w = inp_img.shape[1]
seg_img = cv2.resize(seg_img, (original_w, original_h), interpolation=cv2.INTER_NEAREST)
if (prediction_height is not None) and (prediction_width is not None):
seg_img = cv2.resize(seg_img, (prediction_width, prediction_height), interpolation=cv2.INTER_NEAREST)
if inp_img is not None:
inp_img = cv2.resize(inp_img,
(prediction_width, prediction_height))
if overlay_img:
assert inp_img is not None
seg_img = overlay_seg_image(inp_img, seg_img)
if show_legends:
assert class_names is not None
legend_img = get_legends(class_names, colors=colors)
seg_img = concat_lenends(seg_img, legend_img)
return seg_img
def query_image(img):
image_to_pred = test_transform(image=img)['image']
pixel_values = segformer_rgb_feature_extractor(image_to_pred, return_tensors="pt").pixel_values.to(device)
outputs_segformer_b0_rgb = segformer_b0_rgb_model(pixel_values=pixel_values)
pred_segformer_b0_rgb = outputs_segformer_b0_rgb.logits.cpu().detach().numpy()
pred = np.mean(np.array([K.softmax(pred_segformer_b0_rgb, axis = 1)]), axis = 0)
pred = tf.image.resize(tf.transpose(pred, perm=[0,2,3,1]), size = [512,512], method="bilinear") # resize to 512*512
pred = np.argmax(pred, axis = -1)
pred =np.squeeze(pred)
result = pred.astype(np.uint8)
class_names = [ 'None', 'building', 'pervious surface', 'impervious surface', 'bare soil','water','coniferous','deciduous','brushwood','vineyard', 'herbaceous vegetation', 'agricultural land', 'plowed land']
seg_img = visualize_segmentation(result, img, n_classes=13,
colors=class_colors , overlay_img=True,
show_legends=True,
class_names=class_names,
prediction_width=512,
prediction_height=512)
return seg_img
demo = gr.Interface(
query_image,
inputs=[gr.Image()],
outputs="image",
title="Image Segmentation on aerial imagery",
description = "Segformer b0 finetuned on IGN flair-one dataset, more information here : https://github.com/vlarmet/flair_ign_2nd_place ",
examples=["IMG_011942.jpeg","IMG_005339.jpeg","IMG_004753.jpeg","IMG_011617.jpeg","IMG_003022.jpeg"]
)
demo.launch() #debug=True |