//! This module provides the functionality to scrape and gathers all the results from the upstream //! search engines and then removes duplicate results. use std::{collections::HashMap, time::Duration}; use error_stack::Report; use rand::Rng; use tokio::task::JoinHandle; use super::{ aggregation_models::{EngineErrorInfo, SearchResult, SearchResults}, user_agent::random_user_agent, }; use crate::engines::engine_models::{EngineError, EngineHandler}; /// Aliases for long type annotations type FutureVec = Vec, Report>>>; /// The function aggregates the scraped results from the user-selected upstream search engines. /// These engines can be chosen either from the user interface (UI) or from the configuration file. /// The code handles this process by matching the selected search engines and adding them to a vector. /// This vector is then used to create an asynchronous task vector using `tokio::spawn`, which returns /// a future. This future is awaited in another loop. Once the results are collected, they are filtered /// to remove any errors and ensure only proper results are included. If an error is encountered, it is /// sent to the UI along with the name of the engine and the type of error. This information is finally /// placed in the returned `SearchResults` struct. /// /// Additionally, the function eliminates duplicate results. If two results are identified as coming from /// multiple engines, their names are combined to indicate that the results were fetched from these upstream /// engines. After this, all the data in the `HashMap` is removed and placed into a struct that contains all /// the aggregated results in a vector. Furthermore, the query used is also added to the struct. This step is /// necessary to ensure that the search bar in the search remains populated even when searched from the query URL. /// /// Overall, this function serves to aggregate scraped results from user-selected search engines, handling errors, /// removing duplicates, and organizing the data for display in the UI. /// /// # Example: /// /// If you search from the url like `https://127.0.0.1/search?q=huston` then the search bar should /// contain the word huston and not remain empty. /// /// # Arguments /// /// * `query` - Accepts a string to query with the above upstream search engines. /// * `page` - Accepts an u32 page number. /// * `random_delay` - Accepts a boolean value to add a random delay before making the request. /// * `debug` - Accepts a boolean value to enable or disable debug mode option. /// * `upstream_search_engines` - Accepts a vector of search engine names which was selected by the /// * `request_timeout` - Accepts a time (secs) as a value which controls the server request timeout. /// user through the UI or the config file. /// /// # Error /// /// Returns an error a reqwest and scraping selector errors if any error occurs in the results /// function in either `searx` or `duckduckgo` or both otherwise returns a `SearchResults struct` /// containing appropriate values. pub async fn aggregate( query: String, page: u32, random_delay: bool, debug: bool, upstream_search_engines: Vec, request_timeout: u8, ) -> Result> { let user_agent: String = random_user_agent(); // Add a random delay before making the request. if random_delay || !debug { let mut rng = rand::thread_rng(); let delay_secs = rng.gen_range(1..10); tokio::time::sleep(Duration::from_secs(delay_secs)).await; } let mut names: Vec<&str> = vec![]; // create tasks for upstream result fetching let mut tasks: FutureVec = FutureVec::new(); for engine_handler in upstream_search_engines { let (name, search_engine) = engine_handler.into_name_engine(); names.push(name); let query: String = query.clone(); let user_agent: String = user_agent.clone(); tasks.push(tokio::spawn(async move { search_engine .results(query, page, user_agent.clone(), request_timeout) .await })); } // get upstream responses let mut responses = Vec::with_capacity(tasks.len()); for task in tasks { if let Ok(result) = task.await { responses.push(result) } } // aggregate search results, removing duplicates and handling errors the upstream engines returned let mut result_map: HashMap = HashMap::new(); let mut engine_errors_info: Vec = Vec::new(); let mut handle_error = |error: Report, engine_name: String| { log::error!("Engine Error: {:?}", error); engine_errors_info.push(EngineErrorInfo::new( error.downcast_ref::().unwrap(), engine_name.to_string(), )); }; for _ in 0..responses.len() { let response = responses.pop().unwrap(); let engine = names.pop().unwrap().to_string(); if result_map.is_empty() { match response { Ok(results) => { result_map = results.clone(); } Err(error) => { handle_error(error, engine); } } continue; } match response { Ok(result) => { result.into_iter().for_each(|(key, value)| { result_map .entry(key) .and_modify(|result| { result.add_engines(engine.clone()); }) .or_insert_with(|| -> SearchResult { value }); }); } Err(error) => { handle_error(error, engine); } } } let results = result_map.into_values().collect(); Ok(SearchResults::new( results, query.to_string(), engine_errors_info, )) }