Spaces:
Runtime error
Runtime error
File size: 9,336 Bytes
fc69ace c5c1684 0781385 c5c1684 0781385 15fc415 f94ac50 a3edf70 f94ac50 15fc415 0781385 15fc415 94ef62e a3edf70 cff7de9 fc69ace c5c1684 fc69ace c170de8 0527288 94ef62e 9cb582a 94ef62e fc69ace c5c1684 fc69ace 15fc415 0781385 c170de8 0527288 13632f1 0781385 2d47e8d 15fc415 f94ac50 15fc415 c5c1684 13632f1 0527288 c5c1684 2f01651 0781385 2f01651 0781385 c5c1684 2f01651 a3edf70 2d47e8d a3edf70 1ebf888 2f01651 15fc415 0781385 2f01651 a3edf70 2f01651 0781385 15fc415 a3edf70 a28d559 0781385 a3edf70 2f01651 0781385 a3edf70 653d08c a3edf70 0781385 a3edf70 2f01651 0781385 a3edf70 653d08c a3edf70 0781385 f94ac50 15fc415 f94ac50 a3edf70 f94ac50 15fc415 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
//! This module provides the functionality to scrape and gathers all the results from the upstream
//! search engines and then removes duplicate results.
use std::{collections::HashMap, time::Duration};
use error_stack::Report;
use rand::Rng;
use tokio::task::JoinHandle;
use super::{
aggregation_models::{EngineErrorInfo, RawSearchResult, SearchResult, SearchResults},
user_agent::random_user_agent,
};
use crate::engines::{
duckduckgo,
engine_models::{EngineError, SearchEngine},
searx,
};
/// Aliases for long type annotations
type FutureVec = Vec<JoinHandle<Result<HashMap<String, RawSearchResult>, Report<EngineError>>>>;
/// The function aggregates the scraped results from the user-selected upstream search engines.
/// These engines can be chosen either from the user interface (UI) or from the configuration file.
/// The code handles this process by matching the selected search engines and adding them to a vector.
/// This vector is then used to create an asynchronous task vector using `tokio::spawn`, which returns
/// a future. This future is awaited in another loop. Once the results are collected, they are filtered
/// to remove any errors and ensure only proper results are included. If an error is encountered, it is
/// sent to the UI along with the name of the engine and the type of error. This information is finally
/// placed in the returned `SearchResults` struct.
///
/// Additionally, the function eliminates duplicate results. If two results are identified as coming from
/// multiple engines, their names are combined to indicate that the results were fetched from these upstream
/// engines. After this, all the data in the `HashMap` is removed and placed into a struct that contains all
/// the aggregated results in a vector. Furthermore, the query used is also added to the struct. This step is
/// necessary to ensure that the search bar in the search remains populated even when searched from the query URL.
///
/// Overall, this function serves to aggregate scraped results from user-selected search engines, handling errors,
/// removing duplicates, and organizing the data for display in the UI.
///
/// # Example:
///
/// If you search from the url like `https://127.0.0.1/search?q=huston` then the search bar should
/// contain the word huston and not remain empty.
///
/// # Arguments
///
/// * `query` - Accepts a string to query with the above upstream search engines.
/// * `page` - Accepts an u32 page number.
/// * `random_delay` - Accepts a boolean value to add a random delay before making the request.
/// * `debug` - Accepts a boolean value to enable or disable debug mode option.
/// * `upstream_search_engines` - Accepts a vector of search engine names which was selected by the
/// * `request_timeout` - Accepts a time (secs) as a value which controls the server request timeout.
/// user through the UI or the config file.
///
/// # Error
///
/// Returns an error a reqwest and scraping selector errors if any error occurs in the results
/// function in either `searx` or `duckduckgo` or both otherwise returns a `SearchResults struct`
/// containing appropriate values.
pub async fn aggregate(
query: String,
page: u32,
random_delay: bool,
debug: bool,
upstream_search_engines: Vec<String>,
request_timeout: u8,
) -> Result<SearchResults, Box<dyn std::error::Error>> {
let user_agent: String = random_user_agent();
let mut result_map: HashMap<String, RawSearchResult> = HashMap::new();
// Add a random delay before making the request.
if random_delay || !debug {
let mut rng = rand::thread_rng();
let delay_secs = rng.gen_range(1..10);
std::thread::sleep(Duration::from_secs(delay_secs));
}
// fetch results from upstream search engines simultaneously/concurrently.
let search_engines: Vec<Box<dyn SearchEngine + Send + Sync>> = upstream_search_engines
.iter()
.map(|engine| match engine.to_lowercase().as_str() {
"duckduckgo" => Box::new(duckduckgo::DuckDuckGo) as Box<dyn SearchEngine + Send + Sync>,
"searx" => Box::new(searx::Searx) as Box<dyn SearchEngine + Send + Sync>,
&_ => panic!("Config Error: Incorrect config file option provided"),
})
.collect();
let task_capacity: usize = search_engines.len();
let tasks: FutureVec = search_engines
.into_iter()
.map(|search_engine| {
let query: String = query.clone();
let user_agent: String = user_agent.clone();
tokio::spawn(async move {
search_engine
.results(query, page, user_agent.clone(), request_timeout)
.await
})
})
.collect();
let mut outputs = Vec::with_capacity(task_capacity);
for task in tasks {
if let Ok(result) = task.await {
outputs.push(result)
}
}
let mut engine_errors_info: Vec<EngineErrorInfo> = Vec::new();
// The code block `outputs.iter()` determines whether it is the first time the code is being run.
// It does this by checking the initial flag. If it is the first time, the code selects the first
// engine from which results are fetched and adds or extends them into the `result_map`. If the
// initially selected engine fails, the code automatically selects another engine to map or extend
// into the `result_map`. On the other hand, if an engine selected for the first time successfully
// fetches results and maps them into the `result_map`, the initial flag is set to false. Subsequently,
// the code iterates through the remaining engines one by one. It compares the fetched results from each
// engine with the results already present in the `result_map` to identify any duplicates. If duplicate
// results are found, the code groups them together with the name of the engine from which they were
// fetched, and automatically removes the duplicate results from the newly fetched data.
//
// Additionally, the code handles errors returned by the engines. It keeps track of which engines
// encountered errors and stores this information in a vector of structures called `EngineErrorInfo`.
// Each structure in this vector contains the name of the engine and the type of error it returned.
// These structures will later be added to the final `SearchResults` structure. The `SearchResults`
// structure is used to display an error box in the UI containing the relevant information from
// the `EngineErrorInfo` structure.
//
// In summary, this code block manages the selection of engines, handling of duplicate results, and tracking
// of errors in order to populate the `result_map` and provide informative feedback to the user through the
// `SearchResults` structure.
let mut initial: bool = true;
let mut counter: usize = 0;
outputs.iter().for_each(|results| {
if initial {
match results {
Ok(result) => {
result_map.extend(result.clone());
counter += 1;
initial = false
}
Err(error_type) => {
log::error!("Engine Error: {:?}", error_type);
engine_errors_info.push(EngineErrorInfo::new(
error_type.downcast_ref::<EngineError>().unwrap(),
upstream_search_engines[counter].clone(),
));
counter += 1
}
}
} else {
match results {
Ok(result) => {
result.clone().into_iter().for_each(|(key, value)| {
result_map
.entry(key)
.and_modify(|result| {
result.add_engines(value.clone().engine());
})
.or_insert_with(|| -> RawSearchResult {
RawSearchResult::new(
value.title.clone(),
value.visiting_url.clone(),
value.description.clone(),
value.engine.clone(),
)
});
});
counter += 1
}
Err(error_type) => {
log::error!("Engine Error: {:?}", error_type);
engine_errors_info.push(EngineErrorInfo::new(
error_type.downcast_ref::<EngineError>().unwrap(),
upstream_search_engines[counter].clone(),
));
counter += 1
}
}
}
});
Ok(SearchResults::new(
result_map
.into_iter()
.map(|(key, value)| {
SearchResult::new(
value.title,
value.visiting_url,
key,
value.description,
value.engine,
)
})
.collect(),
query.to_string(),
engine_errors_info,
))
}
|