akuzdeuov commited on
Commit
b376b65
·
verified ·
1 Parent(s): dbfdf1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -18
app.py CHANGED
@@ -5,33 +5,30 @@ from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
-
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
- # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
 
15
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
-
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
- return outputs["text"]
27
-
28
 
29
  def synthesise(text):
30
  inputs = processor(text=text, return_tensors="pt")
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
33
 
34
-
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
@@ -41,17 +38,13 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
- ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
-
50
  demo = gr.Blocks()
51
 
52
  mic_translate = gr.Interface(
53
  fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
  title=title,
57
  description=description,
@@ -59,9 +52,8 @@ mic_translate = gr.Interface(
59
 
60
  file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
- inputs=gr.Audio(source="upload", type="filepath"),
63
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
  title=title,
66
  description=description,
67
  )
@@ -69,4 +61,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
 
10
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
11
 
12
+ translate_pipeline = pipeline("translation_en_to_fr", model="t5-base", device=device)
13
+
14
  processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
15
 
16
+ model = SpeechT5ForTextToSpeech.from_pretrained("Liphos/speecht5_tts_voxpopuli_fr").to(device)
17
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
18
 
19
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
20
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
21
 
 
22
  def translate(audio):
23
+ en_outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
24
+ fr_outputs = translate_pipeline(en_outputs["text"])
25
+ return fr_outputs[0]["translation_text"]
26
 
27
  def synthesise(text):
28
  inputs = processor(text=text, return_tensors="pt")
29
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
30
  return speech.cpu()
31
 
 
32
  def speech_to_speech_translation(audio):
33
  translated_text = translate(audio)
34
  synthesised_speech = synthesise(translated_text)
 
38
 
39
  title = "Cascaded STST"
40
  description = """
41
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French.
 
 
 
42
  """
 
43
  demo = gr.Blocks()
44
 
45
  mic_translate = gr.Interface(
46
  fn=speech_to_speech_translation,
47
+ inputs=gr.Audio(sources="microphone", type="filepath"),
48
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
49
  title=title,
50
  description=description,
 
52
 
53
  file_translate = gr.Interface(
54
  fn=speech_to_speech_translation,
55
+ inputs=gr.Audio(sources="upload", type="filepath"),
56
  outputs=gr.Audio(label="Generated Speech", type="numpy"),
 
57
  title=title,
58
  description=description,
59
  )
 
61
  with demo:
62
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
63
 
64
+ demo.launch()