Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,33 +5,30 @@ from datasets import load_dataset
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
-
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
# load speech translation checkpoint
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
-
|
|
|
15 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
-
|
24 |
def translate(audio):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
|
29 |
def synthesise(text):
|
30 |
inputs = processor(text=text, return_tensors="pt")
|
31 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
32 |
return speech.cpu()
|
33 |
|
34 |
-
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
synthesised_speech = synthesise(translated_text)
|
@@ -41,17 +38,13 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
-
|
47 |
-
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
"""
|
49 |
-
|
50 |
demo = gr.Blocks()
|
51 |
|
52 |
mic_translate = gr.Interface(
|
53 |
fn=speech_to_speech_translation,
|
54 |
-
inputs=gr.Audio(
|
55 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
56 |
title=title,
|
57 |
description=description,
|
@@ -59,9 +52,8 @@ mic_translate = gr.Interface(
|
|
59 |
|
60 |
file_translate = gr.Interface(
|
61 |
fn=speech_to_speech_translation,
|
62 |
-
inputs=gr.Audio(
|
63 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./example.wav"]],
|
65 |
title=title,
|
66 |
description=description,
|
67 |
)
|
@@ -69,4 +61,4 @@ file_translate = gr.Interface(
|
|
69 |
with demo:
|
70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
|
72 |
-
demo.launch()
|
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
|
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
|
|
10 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
11 |
|
12 |
+
translate_pipeline = pipeline("translation_en_to_fr", model="t5-base", device=device)
|
13 |
+
|
14 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
15 |
|
16 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Liphos/speecht5_tts_voxpopuli_fr").to(device)
|
17 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
18 |
|
19 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
21 |
|
|
|
22 |
def translate(audio):
|
23 |
+
en_outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
24 |
+
fr_outputs = translate_pipeline(en_outputs["text"])
|
25 |
+
return fr_outputs[0]["translation_text"]
|
26 |
|
27 |
def synthesise(text):
|
28 |
inputs = processor(text=text, return_tensors="pt")
|
29 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
30 |
return speech.cpu()
|
31 |
|
|
|
32 |
def speech_to_speech_translation(audio):
|
33 |
translated_text = translate(audio)
|
34 |
synthesised_speech = synthesise(translated_text)
|
|
|
38 |
|
39 |
title = "Cascaded STST"
|
40 |
description = """
|
41 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French.
|
|
|
|
|
|
|
42 |
"""
|
|
|
43 |
demo = gr.Blocks()
|
44 |
|
45 |
mic_translate = gr.Interface(
|
46 |
fn=speech_to_speech_translation,
|
47 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
48 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
49 |
title=title,
|
50 |
description=description,
|
|
|
52 |
|
53 |
file_translate = gr.Interface(
|
54 |
fn=speech_to_speech_translation,
|
55 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
56 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
|
|
57 |
title=title,
|
58 |
description=description,
|
59 |
)
|
|
|
61 |
with demo:
|
62 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
63 |
|
64 |
+
demo.launch()
|