|
import copy
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
from torch import optim
|
|
from trainer.logging.tensorboard_logger import TensorboardLogger
|
|
|
|
from tests import get_tests_data_path, get_tests_input_path, get_tests_output_path
|
|
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
|
|
from TTS.tts.layers.losses import GlowTTSLoss
|
|
from TTS.tts.models.glow_tts import GlowTTS
|
|
from TTS.tts.utils.speakers import SpeakerManager
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
|
|
|
|
torch.manual_seed(1)
|
|
use_cuda = torch.cuda.is_available()
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
c = GlowTTSConfig()
|
|
|
|
ap = AudioProcessor(**c.audio)
|
|
WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav")
|
|
BATCH_SIZE = 3
|
|
|
|
|
|
def count_parameters(model):
|
|
r"""Count number of trainable parameters in a network"""
|
|
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
|
|
|
class TestGlowTTS(unittest.TestCase):
|
|
@staticmethod
|
|
def _create_inputs(batch_size=8):
|
|
input_dummy = torch.randint(0, 24, (batch_size, 128)).long().to(device)
|
|
input_lengths = torch.randint(100, 129, (batch_size,)).long().to(device)
|
|
input_lengths[-1] = 128
|
|
mel_spec = torch.rand(batch_size, 30, c.audio["num_mels"]).to(device)
|
|
mel_lengths = torch.randint(20, 30, (batch_size,)).long().to(device)
|
|
speaker_ids = torch.randint(0, 5, (batch_size,)).long().to(device)
|
|
return input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids
|
|
|
|
@staticmethod
|
|
def _check_parameter_changes(model, model_ref):
|
|
count = 0
|
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
|
|
assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format(
|
|
count, param.shape, param, param_ref
|
|
)
|
|
count += 1
|
|
|
|
def test_init_multispeaker(self):
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS(config)
|
|
|
|
config.use_speaker_embedding = True
|
|
config.num_speakers = 5
|
|
config.d_vector_dim = None
|
|
model.init_multispeaker(config)
|
|
self.assertEqual(model.c_in_channels, model.hidden_channels_enc)
|
|
|
|
config = GlowTTSConfig(num_chars=32)
|
|
config.use_d_vector_file = True
|
|
config.d_vector_dim = 301
|
|
model = GlowTTS(config)
|
|
model.init_multispeaker(config)
|
|
self.assertEqual(model.c_in_channels, 301)
|
|
|
|
config = GlowTTSConfig(num_chars=32)
|
|
config.use_speaker_embedding = True
|
|
config.speakers_file = os.path.join(get_tests_data_path(), "ljspeech", "speakers.json")
|
|
speaker_manager = SpeakerManager.init_from_config(config)
|
|
model = GlowTTS(config)
|
|
model.speaker_manager = speaker_manager
|
|
model.init_multispeaker(config)
|
|
self.assertEqual(model.c_in_channels, model.hidden_channels_enc)
|
|
self.assertEqual(model.num_speakers, speaker_manager.num_speakers)
|
|
|
|
config = GlowTTSConfig(num_chars=32)
|
|
config.use_d_vector_file = True
|
|
config.d_vector_dim = 256
|
|
config.d_vector_file = os.path.join(get_tests_data_path(), "dummy_speakers.json")
|
|
speaker_manager = SpeakerManager.init_from_config(config)
|
|
model = GlowTTS(config)
|
|
model.speaker_manager = speaker_manager
|
|
model.init_multispeaker(config)
|
|
self.assertEqual(model.c_in_channels, speaker_manager.embedding_dim)
|
|
self.assertEqual(model.num_speakers, speaker_manager.num_speakers)
|
|
|
|
def test_unlock_act_norm_layers(self):
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS(config).to(device)
|
|
model.unlock_act_norm_layers()
|
|
for f in model.decoder.flows:
|
|
if getattr(f, "set_ddi", False):
|
|
self.assertFalse(f.initialized)
|
|
|
|
def test_lock_act_norm_layers(self):
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS(config).to(device)
|
|
model.lock_act_norm_layers()
|
|
for f in model.decoder.flows:
|
|
if getattr(f, "set_ddi", False):
|
|
self.assertTrue(f.initialized)
|
|
|
|
def _test_forward(self, batch_size):
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
|
|
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS(config).to(device)
|
|
model.train()
|
|
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model)))
|
|
|
|
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths)
|
|
self.assertEqual(y["z"].shape, mel_spec.shape)
|
|
self.assertEqual(y["logdet"].shape, torch.Size([batch_size]))
|
|
self.assertEqual(y["y_mean"].shape, mel_spec.shape)
|
|
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape)
|
|
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],))
|
|
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,))
|
|
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,))
|
|
|
|
def test_forward(self):
|
|
self._test_forward(1)
|
|
self._test_forward(3)
|
|
|
|
def _test_forward_with_d_vector(self, batch_size):
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
|
|
d_vector = torch.rand(batch_size, 256).to(device)
|
|
|
|
config = GlowTTSConfig(
|
|
num_chars=32,
|
|
use_d_vector_file=True,
|
|
d_vector_dim=256,
|
|
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"),
|
|
)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
model.train()
|
|
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model)))
|
|
|
|
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"d_vectors": d_vector})
|
|
self.assertEqual(y["z"].shape, mel_spec.shape)
|
|
self.assertEqual(y["logdet"].shape, torch.Size([batch_size]))
|
|
self.assertEqual(y["y_mean"].shape, mel_spec.shape)
|
|
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape)
|
|
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],))
|
|
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,))
|
|
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,))
|
|
|
|
def test_forward_with_d_vector(self):
|
|
self._test_forward_with_d_vector(1)
|
|
self._test_forward_with_d_vector(3)
|
|
|
|
def _test_forward_with_speaker_id(self, batch_size):
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
|
|
speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device)
|
|
|
|
config = GlowTTSConfig(
|
|
num_chars=32,
|
|
use_speaker_embedding=True,
|
|
num_speakers=24,
|
|
)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
model.train()
|
|
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model)))
|
|
|
|
y = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, {"speaker_ids": speaker_ids})
|
|
self.assertEqual(y["z"].shape, mel_spec.shape)
|
|
self.assertEqual(y["logdet"].shape, torch.Size([batch_size]))
|
|
self.assertEqual(y["y_mean"].shape, mel_spec.shape)
|
|
self.assertEqual(y["y_log_scale"].shape, mel_spec.shape)
|
|
self.assertEqual(y["alignments"].shape, mel_spec.shape[:2] + (input_dummy.shape[1],))
|
|
self.assertEqual(y["durations_log"].shape, input_dummy.shape + (1,))
|
|
self.assertEqual(y["total_durations_log"].shape, input_dummy.shape + (1,))
|
|
|
|
def test_forward_with_speaker_id(self):
|
|
self._test_forward_with_speaker_id(1)
|
|
self._test_forward_with_speaker_id(3)
|
|
|
|
def _assert_inference_outputs(self, outputs, input_dummy, mel_spec):
|
|
output_shape = outputs["model_outputs"].shape
|
|
self.assertEqual(outputs["model_outputs"].shape[::2], mel_spec.shape[::2])
|
|
self.assertEqual(outputs["logdet"], None)
|
|
self.assertEqual(outputs["y_mean"].shape, output_shape)
|
|
self.assertEqual(outputs["y_log_scale"].shape, output_shape)
|
|
self.assertEqual(outputs["alignments"].shape, output_shape[:2] + (input_dummy.shape[1],))
|
|
self.assertEqual(outputs["durations_log"].shape, input_dummy.shape + (1,))
|
|
self.assertEqual(outputs["total_durations_log"].shape, input_dummy.shape + (1,))
|
|
|
|
def _test_inference(self, batch_size):
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS(config).to(device)
|
|
model.eval()
|
|
outputs = model.inference(input_dummy, {"x_lengths": input_lengths})
|
|
self._assert_inference_outputs(outputs, input_dummy, mel_spec)
|
|
|
|
def test_inference(self):
|
|
self._test_inference(1)
|
|
self._test_inference(3)
|
|
|
|
def _test_inference_with_d_vector(self, batch_size):
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
|
|
d_vector = torch.rand(batch_size, 256).to(device)
|
|
config = GlowTTSConfig(
|
|
num_chars=32,
|
|
use_d_vector_file=True,
|
|
d_vector_dim=256,
|
|
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"),
|
|
)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
model.eval()
|
|
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "d_vectors": d_vector})
|
|
self._assert_inference_outputs(outputs, input_dummy, mel_spec)
|
|
|
|
def test_inference_with_d_vector(self):
|
|
self._test_inference_with_d_vector(1)
|
|
self._test_inference_with_d_vector(3)
|
|
|
|
def _test_inference_with_speaker_ids(self, batch_size):
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
|
|
speaker_ids = torch.randint(0, 24, (batch_size,)).long().to(device)
|
|
|
|
config = GlowTTSConfig(
|
|
num_chars=32,
|
|
use_speaker_embedding=True,
|
|
num_speakers=24,
|
|
)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
outputs = model.inference(input_dummy, {"x_lengths": input_lengths, "speaker_ids": speaker_ids})
|
|
self._assert_inference_outputs(outputs, input_dummy, mel_spec)
|
|
|
|
def test_inference_with_speaker_ids(self):
|
|
self._test_inference_with_speaker_ids(1)
|
|
self._test_inference_with_speaker_ids(3)
|
|
|
|
def _test_inference_with_MAS(self, batch_size):
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
|
|
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS(config).to(device)
|
|
model.eval()
|
|
|
|
y = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths)
|
|
y2 = model.decoder_inference(mel_spec, mel_lengths)
|
|
assert (
|
|
y2["model_outputs"].shape == y["model_outputs"].shape
|
|
), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format(
|
|
y["model_outputs"].shape, y2["model_outputs"].shape
|
|
)
|
|
|
|
def test_inference_with_MAS(self):
|
|
self._test_inference_with_MAS(1)
|
|
self._test_inference_with_MAS(3)
|
|
|
|
def test_train_step(self):
|
|
batch_size = BATCH_SIZE
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids = self._create_inputs(batch_size)
|
|
criterion = GlowTTSLoss()
|
|
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS(config).to(device)
|
|
|
|
model_ref = GlowTTS(config).to(device)
|
|
model.train()
|
|
print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model)))
|
|
|
|
model_ref.load_state_dict(copy.deepcopy(model.state_dict()))
|
|
count = 0
|
|
for param, param_ref in zip(model.parameters(), model_ref.parameters()):
|
|
assert (param - param_ref).sum() == 0, param
|
|
count += 1
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
for _ in range(5):
|
|
optimizer.zero_grad()
|
|
outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, None)
|
|
loss_dict = criterion(
|
|
outputs["z"],
|
|
outputs["y_mean"],
|
|
outputs["y_log_scale"],
|
|
outputs["logdet"],
|
|
mel_lengths,
|
|
outputs["durations_log"],
|
|
outputs["total_durations_log"],
|
|
input_lengths,
|
|
)
|
|
loss = loss_dict["loss"]
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
self._check_parameter_changes(model, model_ref)
|
|
|
|
def test_train_eval_log(self):
|
|
batch_size = BATCH_SIZE
|
|
input_dummy, input_lengths, mel_spec, mel_lengths, _ = self._create_inputs(batch_size)
|
|
batch = {}
|
|
batch["text_input"] = input_dummy
|
|
batch["text_lengths"] = input_lengths
|
|
batch["mel_lengths"] = mel_lengths
|
|
batch["mel_input"] = mel_spec
|
|
batch["d_vectors"] = None
|
|
batch["speaker_ids"] = None
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
model.run_data_dep_init = False
|
|
model.train()
|
|
logger = TensorboardLogger(
|
|
log_dir=os.path.join(get_tests_output_path(), "dummy_glow_tts_logs"), model_name="glow_tts_test_train_log"
|
|
)
|
|
criterion = model.get_criterion()
|
|
outputs, _ = model.train_step(batch, criterion)
|
|
model.train_log(batch, outputs, logger, None, 1)
|
|
model.eval_log(batch, outputs, logger, None, 1)
|
|
logger.finish()
|
|
|
|
def test_test_run(self):
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
model.run_data_dep_init = False
|
|
model.eval()
|
|
test_figures, test_audios = model.test_run(None)
|
|
self.assertTrue(test_figures is not None)
|
|
self.assertTrue(test_audios is not None)
|
|
|
|
def test_load_checkpoint(self):
|
|
chkp_path = os.path.join(get_tests_output_path(), "dummy_glow_tts_checkpoint.pth")
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
chkp = {}
|
|
chkp["model"] = model.state_dict()
|
|
torch.save(chkp, chkp_path)
|
|
model.load_checkpoint(config, chkp_path)
|
|
self.assertTrue(model.training)
|
|
model.load_checkpoint(config, chkp_path, eval=True)
|
|
self.assertFalse(model.training)
|
|
|
|
def test_get_criterion(self):
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
criterion = model.get_criterion()
|
|
self.assertTrue(criterion is not None)
|
|
|
|
def test_init_from_config(self):
|
|
config = GlowTTSConfig(num_chars=32)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
|
|
config = GlowTTSConfig(num_chars=32, num_speakers=2)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
self.assertTrue(model.num_speakers == 2)
|
|
self.assertTrue(not hasattr(model, "emb_g"))
|
|
|
|
config = GlowTTSConfig(num_chars=32, num_speakers=2, use_speaker_embedding=True)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
self.assertTrue(model.num_speakers == 2)
|
|
self.assertTrue(hasattr(model, "emb_g"))
|
|
|
|
config = GlowTTSConfig(
|
|
num_chars=32,
|
|
num_speakers=2,
|
|
use_speaker_embedding=True,
|
|
speakers_file=os.path.join(get_tests_data_path(), "ljspeech", "speakers.json"),
|
|
)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
self.assertTrue(model.num_speakers == 10)
|
|
self.assertTrue(hasattr(model, "emb_g"))
|
|
|
|
config = GlowTTSConfig(
|
|
num_chars=32,
|
|
use_d_vector_file=True,
|
|
d_vector_dim=256,
|
|
d_vector_file=os.path.join(get_tests_data_path(), "dummy_speakers.json"),
|
|
)
|
|
model = GlowTTS.init_from_config(config, verbose=False).to(device)
|
|
self.assertTrue(model.num_speakers == 1)
|
|
self.assertTrue(not hasattr(model, "emb_g"))
|
|
self.assertTrue(model.c_in_channels == config.d_vector_dim)
|
|
|