|
import glob
|
|
import json
|
|
import os
|
|
import shutil
|
|
|
|
from trainer import get_last_checkpoint
|
|
|
|
from tests import get_device_id, get_tests_output_path, run_cli
|
|
from TTS.config.shared_configs import BaseAudioConfig
|
|
from TTS.tts.configs.fastspeech2_config import Fastspeech2Config
|
|
|
|
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
|
|
output_path = os.path.join(get_tests_output_path(), "train_outputs")
|
|
|
|
audio_config = BaseAudioConfig(
|
|
sample_rate=22050,
|
|
do_trim_silence=True,
|
|
trim_db=60.0,
|
|
signal_norm=False,
|
|
mel_fmin=0.0,
|
|
mel_fmax=8000,
|
|
spec_gain=1.0,
|
|
log_func="np.log",
|
|
ref_level_db=20,
|
|
preemphasis=0.0,
|
|
)
|
|
|
|
config = Fastspeech2Config(
|
|
audio=audio_config,
|
|
batch_size=8,
|
|
eval_batch_size=8,
|
|
num_loader_workers=0,
|
|
num_eval_loader_workers=0,
|
|
text_cleaner="english_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="en-us",
|
|
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
|
|
f0_cache_path="tests/data/ljspeech/f0_cache/",
|
|
compute_f0=True,
|
|
compute_energy=True,
|
|
energy_cache_path="tests/data/ljspeech/energy_cache/",
|
|
run_eval=True,
|
|
test_delay_epochs=-1,
|
|
epochs=1,
|
|
print_step=1,
|
|
print_eval=True,
|
|
test_sentences=[
|
|
"Be a voice, not an echo.",
|
|
],
|
|
use_speaker_embedding=False,
|
|
)
|
|
config.audio.do_trim_silence = True
|
|
config.use_speaker_embedding = False
|
|
config.model_args.use_speaker_embedding = False
|
|
config.audio.trim_db = 60
|
|
config.save_json(config_path)
|
|
|
|
|
|
command_train = (
|
|
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
|
|
f"--coqpit.output_path {output_path} "
|
|
"--coqpit.datasets.0.formatter ljspeech "
|
|
"--coqpit.datasets.0.meta_file_train metadata.csv "
|
|
"--coqpit.datasets.0.meta_file_val metadata.csv "
|
|
"--coqpit.datasets.0.path tests/data/ljspeech "
|
|
"--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt "
|
|
"--coqpit.test_delay_epochs 0"
|
|
)
|
|
|
|
run_cli(command_train)
|
|
|
|
|
|
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
|
|
|
|
|
|
continue_config_path = os.path.join(continue_path, "config.json")
|
|
continue_restore_path, _ = get_last_checkpoint(continue_path)
|
|
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
|
|
|
|
|
|
with open(continue_config_path, "r", encoding="utf-8") as f:
|
|
config_loaded = json.load(f)
|
|
assert config_loaded["characters"] is not None
|
|
assert config_loaded["output_path"] in continue_path
|
|
assert config_loaded["test_delay_epochs"] == 0
|
|
|
|
|
|
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
|
|
run_cli(inference_command)
|
|
|
|
|
|
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
|
|
run_cli(command_train)
|
|
shutil.rmtree(continue_path)
|
|
|