File size: 1,666 Bytes
8a39e1b
 
 
8987e14
8a39e1b
 
 
8987e14
8a39e1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def find_closest(query):
    files_contents = []
    files_names = []

    for file in os.listdir():
        if file.endswith(".txt"):
            with open(file, 'r') as f:
                content = f.read()
                files_contents.append(content)
                files_names.append(file)

    # Append query to the end
    files_contents.append(query)

    # Initialize the TfidfVectorizer
    tfidf_vectorizer = TfidfVectorizer()

    # Fit and transform the texts
    tfidf_matrix = tfidf_vectorizer.fit_transform(files_contents)

    # Compute the cosine similarity between the query and all files
    similarity_scores = cosine_similarity(tfidf_matrix[-1:], tfidf_matrix[:-1])

    # Get the index of the file with the highest similarity score
    max_similarity_idx = similarity_scores.argmax()

    # Return the name of the file with the highest similarity score
    return files_names[max_similarity_idx]

def find_closest_mp3(query):
    closest_txt_file = find_closest(query)
    file_name_without_extension, _ = os.path.splitext(closest_txt_file)
    return file_name_without_extension + '.mp3'
my_theme = gr.Theme.from_hub("ysharma/llamas")
with gr.Blocks(theme=my_theme) as demo:
  gr.Markdown("# BeatLlama Dreambooth!")
  # video=gr.PlayableVideo("final_video.mp4")
  inp=gr.Textbox(placeholder="Describe your dream!",label="Your dream")
  out=gr.Audio(label="Llamas singing your dream")
  inp.change(find_closest_mp3,inp,out,scroll_to_output=True)
  out.play(None)
demo.queue(1)
demo.launch(show_api=False,debug=True)