from ragatouille import RAGPretrainedModel import os import gradio as gr path_to_index = 'colbert/indexes/akhooli/Arabic-ColBERT-100knew_index' message = "waiting to load index ..." if os.path.exists(path_to_index): RAG = RAGPretrainedModel.from_index(path_to_index) message = "index loaded!" print(message) import gradio as gr def process_results(results): for r in results: print(f"Sura: {r['document_id']} ({r['document_metadata']}) \n Text:{r['content']}") k = 3 # How many documents you want to retrieve def answer_fn(query): results = RAG.search(query= query) return process_results(results) qapp = gr.Interface(fn=answer_fn, inputs="textbox", outputs="textbox") if __name__ == "__main__": qapp.launch()