|
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
|
|
model_id = 'plasmo/woolitize' |
|
prefix = '' |
|
|
|
scheduler = DPMSolverMultistepScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
trained_betas=None, |
|
predict_epsilon=True, |
|
thresholding=False, |
|
algorithm_type="dpmsolver++", |
|
solver_type="midpoint", |
|
lower_order_final=True, |
|
) |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
scheduler=scheduler) |
|
|
|
pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, |
|
scheduler=scheduler) |
|
|
|
if torch.cuda.is_available(): |
|
pipe = pipe.to("cuda") |
|
pipe_i2i = pipe_i2i.to("cuda") |
|
|
|
def error_str(error, title="Error"): |
|
return f"""#### {title} |
|
{error}""" if error else "" |
|
|
|
def inference(prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", auto_prefix=True): |
|
|
|
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None |
|
prompt = f"{prefix} {prompt}" if auto_prefix else prompt |
|
|
|
try: |
|
if img is not None: |
|
return img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator), None |
|
else: |
|
return txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator), None |
|
except Exception as e: |
|
return None, error_str(e) |
|
|
|
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator): |
|
|
|
result = pipe( |
|
prompt, |
|
negative_prompt = neg_prompt, |
|
num_inference_steps = int(steps), |
|
guidance_scale = guidance, |
|
width = width, |
|
height = height, |
|
generator = generator) |
|
|
|
return replace_nsfw_images(result) |
|
|
|
def img_to_img(prompt, neg_prompt, img, strength, guidance, steps, width, height, generator): |
|
|
|
ratio = min(height / img.height, width / img.width) |
|
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) |
|
result = pipe_i2i( |
|
prompt, |
|
negative_prompt = neg_prompt, |
|
init_image = img, |
|
num_inference_steps = int(steps), |
|
strength = strength, |
|
guidance_scale = guidance, |
|
width = width, |
|
height = height, |
|
generator = generator) |
|
|
|
return replace_nsfw_images(result) |
|
|
|
def replace_nsfw_images(results): |
|
|
|
for i in range(len(results.images)): |
|
if results.nsfw_content_detected[i]: |
|
results.images[i] = Image.open("nsfw.png") |
|
return results.images[0] |
|
|
|
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
gr.HTML( |
|
f""" |
|
<div class="main-div"> |
|
<div> |
|
<h1>Woolitize</h1> |
|
</div> |
|
<p> |
|
Demo for <a href="https://huggingface.co./plasmo/woolitize">Woolitize</a> Stable Diffusion model.<br> |
|
Add the following tokens to your prompts for the model to work properly: <b></b>. |
|
</p> |
|
<p>This demo is currently on cpu, to use it upgrade to gpu by going to settings after duplicating this space: <a style="display:inline-block" href="https://huggingface.co./spaces/akhaliq/woolitize?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> </p> |
|
Running on <b>{"GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"}</b> |
|
</div> |
|
""" |
|
) |
|
with gr.Row(): |
|
|
|
with gr.Column(scale=55): |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder=f"{prefix} [your prompt]").style(container=False) |
|
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False)) |
|
|
|
image_out = gr.Image(height=512) |
|
error_output = gr.Markdown() |
|
|
|
with gr.Column(scale=45): |
|
with gr.Tab("Options"): |
|
with gr.Group(): |
|
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image") |
|
auto_prefix = gr.Checkbox(label="Prefix styling tokens automatically ()", value=True) |
|
|
|
with gr.Row(): |
|
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15) |
|
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8) |
|
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8) |
|
|
|
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1) |
|
|
|
with gr.Tab("Image to image"): |
|
with gr.Group(): |
|
image = gr.Image(label="Image", height=256, tool="editor", type="pil") |
|
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5) |
|
|
|
auto_prefix.change(lambda x: gr.update(placeholder=f"{prefix} [your prompt]" if x else "[Your prompt]"), inputs=auto_prefix, outputs=prompt, queue=False) |
|
|
|
inputs = [prompt, guidance, steps, width, height, seed, image, strength, neg_prompt, auto_prefix] |
|
outputs = [image_out, error_output] |
|
prompt.submit(inference, inputs=inputs, outputs=outputs) |
|
generate.click(inference, inputs=inputs, outputs=outputs) |
|
|
|
gr.HTML(""" |
|
<div style="border-top: 1px solid #303030;"> |
|
<br> |
|
<p>This space was created using <a href="https://huggingface.co./spaces/anzorq/sd-space-creator">SD Space Creator</a>.</p> |
|
</div> |
|
""") |
|
|
|
demo.queue(concurrency_count=1) |
|
demo.launch() |
|
|