from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import soundfile as sf import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-robust-ft-libri-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-robust-ft-libri-960h") # define function to read in sound file def map_to_array(file): speech, _ = sf.read(file) return speech # tokenize def inference(audio): input_values = processor(map_to_array('/content/sample_data/sample2.flac'), return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) return transcription[0] inputs = gr.inputs.Audio(label="Input Audio", type="file") outputs = gr.outputs.Textbox(label="Output Text") title = "wav2vec 2.0" description = "demo for Facebook AI wav2vec 2.0 using Hugging Face transformers. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." article = "

wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations | Github Repo | Hugging Face model

" examples = [ ["poem.wav"] ] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()