import os import cv2 import paddlehub as hub import gradio as gr import torch torch.hub.download_url_to_file('https://cdn.pixabay.com/photo/2016/10/21/14/46/fox-1758183_1280.jpg', 'fox.jpg') model = hub.Module(name='U2Net') def infer(webcam, img,option): if option == "webcam": webcam.save('temp.jpg') result = model.Segmentation( images=[cv2.imread("temp.jpg")], paths=None, batch_size=1, input_size=320, output_dir='output', visualization=True) else: img.save('temp.jpg') result = model.Segmentation( images=[cv2.imread("temp.jpg")], paths=None, batch_size=1, input_size=320, output_dir='output', visualization=True) return result[0]['front'][:,:,::-1], result[0]['mask'] inputs = [gr.inputs.Image(source="webcam", label="Webcam", type="pil",optional=True),gr.inputs.Image(source="upload", label="Input Image", type="pil",optional=True),gr.inputs.Radio(choices=["webcam","Image"], type="value", default="Image", label="Input Type")] outputs = [ gr.outputs.Image(type="numpy",label="Front"), gr.outputs.Image(type="numpy",label="Mask") ] title = "U^2-Net" description = "demo for U^2-Net. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection | Github Repo

" examples = [ ['fox.jpg','fox.jpg','Image'], ] gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()