from evaluation.summeval_metric import SummEvalMetric from typing import List, Dict import nltk class RougeWe(SummEvalMetric): metric_name = "rougeWE" range = (0, 1) higher_is_better = True requires_heavy_compute = True def __init__(self): from summ_eval.rouge_we_metric import RougeWeMetric nltk.download("stopwords") se_metric = RougeWeMetric() super(RougeWe, self).__init__(se_metric) def evaluate( self, inputs: List[str], targets: List[str], keys: List[str] = ["rouge_we_3_f"] ) -> Dict[str, float]: # TODO zhangir: update when dataset api is merged. return super(RougeWe, self).evaluate(inputs, targets, keys)