from encoder.visualizations import Visualizations from encoder.data_objects import SpeakerVerificationDataLoader, SpeakerVerificationDataset from encoder.params_model import * from encoder.model import SpeakerEncoder from utils.profiler import Profiler from pathlib import Path import torch def sync(device: torch.device): # For correct profiling (cuda operations are async) if device.type == "cuda": torch.cuda.synchronize(device) def train(run_id: str, clean_data_root: Path, models_dir: Path, umap_every: int, save_every: int, backup_every: int, vis_every: int, force_restart: bool, visdom_server: str, no_visdom: bool): # Create a dataset and a dataloader dataset = SpeakerVerificationDataset(clean_data_root) loader = SpeakerVerificationDataLoader( dataset, speakers_per_batch, utterances_per_speaker, num_workers=8, ) # Setup the device on which to run the forward pass and the loss. These can be different, # because the forward pass is faster on the GPU whereas the loss is often (depending on your # hyperparameters) faster on the CPU. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # FIXME: currently, the gradient is None if loss_device is cuda loss_device = torch.device("cpu") # Create the model and the optimizer model = SpeakerEncoder(device, loss_device) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate_init) init_step = 1 # Configure file path for the model state_fpath = models_dir.joinpath(run_id + ".pt") backup_dir = models_dir.joinpath(run_id + "_backups") # Load any existing model if not force_restart: if state_fpath.exists(): print("Found existing model \"%s\", loading it and resuming training." % run_id) checkpoint = torch.load(state_fpath) init_step = checkpoint["step"] model.load_state_dict(checkpoint["model_state"]) optimizer.load_state_dict(checkpoint["optimizer_state"]) optimizer.param_groups[0]["lr"] = learning_rate_init else: print("No model \"%s\" found, starting training from scratch." % run_id) else: print("Starting the training from scratch.") model.train() # Initialize the visualization environment vis = Visualizations(run_id, vis_every, server=visdom_server, disabled=no_visdom) vis.log_dataset(dataset) vis.log_params() device_name = str(torch.cuda.get_device_name(0) if torch.cuda.is_available() else "CPU") vis.log_implementation({"Device": device_name}) # Training loop profiler = Profiler(summarize_every=10, disabled=False) for step, speaker_batch in enumerate(loader, init_step): profiler.tick("Blocking, waiting for batch (threaded)") # Forward pass inputs = torch.from_numpy(speaker_batch.data).to(device) sync(device) profiler.tick("Data to %s" % device) embeds = model(inputs) sync(device) profiler.tick("Forward pass") embeds_loss = embeds.view((speakers_per_batch, utterances_per_speaker, -1)).to(loss_device) loss, eer = model.loss(embeds_loss) sync(loss_device) profiler.tick("Loss") # Backward pass model.zero_grad() loss.backward() profiler.tick("Backward pass") model.do_gradient_ops() optimizer.step() profiler.tick("Parameter update") # Update visualizations # learning_rate = optimizer.param_groups[0]["lr"] vis.update(loss.item(), eer, step) # Draw projections and save them to the backup folder if umap_every != 0 and step % umap_every == 0: print("Drawing and saving projections (step %d)" % step) backup_dir.mkdir(exist_ok=True) projection_fpath = backup_dir.joinpath("%s_umap_%06d.png" % (run_id, step)) embeds = embeds.detach().cpu().numpy() vis.draw_projections(embeds, utterances_per_speaker, step, projection_fpath) vis.save() # Overwrite the latest version of the model if save_every != 0 and step % save_every == 0: print("Saving the model (step %d)" % step) torch.save({ "step": step + 1, "model_state": model.state_dict(), "optimizer_state": optimizer.state_dict(), }, state_fpath) # Make a backup if backup_every != 0 and step % backup_every == 0: print("Making a backup (step %d)" % step) backup_dir.mkdir(exist_ok=True) backup_fpath = backup_dir.joinpath("%s_bak_%06d.pt" % (run_id, step)) torch.save({ "step": step + 1, "model_state": model.state_dict(), "optimizer_state": optimizer.state_dict(), }, backup_fpath) profiler.tick("Extras (visualizations, saving)")