akhaliq3
spaces demo
24829a1
raw
history blame
20.1 kB
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
from typing import Union
class HighwayNetwork(nn.Module):
def __init__(self, size):
super().__init__()
self.W1 = nn.Linear(size, size)
self.W2 = nn.Linear(size, size)
self.W1.bias.data.fill_(0.)
def forward(self, x):
x1 = self.W1(x)
x2 = self.W2(x)
g = torch.sigmoid(x2)
y = g * F.relu(x1) + (1. - g) * x
return y
class Encoder(nn.Module):
def __init__(self, embed_dims, num_chars, encoder_dims, K, num_highways, dropout):
super().__init__()
prenet_dims = (encoder_dims, encoder_dims)
cbhg_channels = encoder_dims
self.embedding = nn.Embedding(num_chars, embed_dims)
self.pre_net = PreNet(embed_dims, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
dropout=dropout)
self.cbhg = CBHG(K=K, in_channels=cbhg_channels, channels=cbhg_channels,
proj_channels=[cbhg_channels, cbhg_channels],
num_highways=num_highways)
def forward(self, x, speaker_embedding=None):
x = self.embedding(x)
x = self.pre_net(x)
x.transpose_(1, 2)
x = self.cbhg(x)
if speaker_embedding is not None:
x = self.add_speaker_embedding(x, speaker_embedding)
return x
def add_speaker_embedding(self, x, speaker_embedding):
# SV2TTS
# The input x is the encoder output and is a 3D tensor with size (batch_size, num_chars, tts_embed_dims)
# When training, speaker_embedding is also a 2D tensor with size (batch_size, speaker_embedding_size)
# (for inference, speaker_embedding is a 1D tensor with size (speaker_embedding_size))
# This concats the speaker embedding for each char in the encoder output
# Save the dimensions as human-readable names
batch_size = x.size()[0]
num_chars = x.size()[1]
if speaker_embedding.dim() == 1:
idx = 0
else:
idx = 1
# Start by making a copy of each speaker embedding to match the input text length
# The output of this has size (batch_size, num_chars * tts_embed_dims)
speaker_embedding_size = speaker_embedding.size()[idx]
e = speaker_embedding.repeat_interleave(num_chars, dim=idx)
# Reshape it and transpose
e = e.reshape(batch_size, speaker_embedding_size, num_chars)
e = e.transpose(1, 2)
# Concatenate the tiled speaker embedding with the encoder output
x = torch.cat((x, e), 2)
return x
class BatchNormConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel, relu=True):
super().__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel, stride=1, padding=kernel // 2, bias=False)
self.bnorm = nn.BatchNorm1d(out_channels)
self.relu = relu
def forward(self, x):
x = self.conv(x)
x = F.relu(x) if self.relu is True else x
return self.bnorm(x)
class CBHG(nn.Module):
def __init__(self, K, in_channels, channels, proj_channels, num_highways):
super().__init__()
# List of all rnns to call `flatten_parameters()` on
self._to_flatten = []
self.bank_kernels = [i for i in range(1, K + 1)]
self.conv1d_bank = nn.ModuleList()
for k in self.bank_kernels:
conv = BatchNormConv(in_channels, channels, k)
self.conv1d_bank.append(conv)
self.maxpool = nn.MaxPool1d(kernel_size=2, stride=1, padding=1)
self.conv_project1 = BatchNormConv(len(self.bank_kernels) * channels, proj_channels[0], 3)
self.conv_project2 = BatchNormConv(proj_channels[0], proj_channels[1], 3, relu=False)
# Fix the highway input if necessary
if proj_channels[-1] != channels:
self.highway_mismatch = True
self.pre_highway = nn.Linear(proj_channels[-1], channels, bias=False)
else:
self.highway_mismatch = False
self.highways = nn.ModuleList()
for i in range(num_highways):
hn = HighwayNetwork(channels)
self.highways.append(hn)
self.rnn = nn.GRU(channels, channels // 2, batch_first=True, bidirectional=True)
self._to_flatten.append(self.rnn)
# Avoid fragmentation of RNN parameters and associated warning
self._flatten_parameters()
def forward(self, x):
# Although we `_flatten_parameters()` on init, when using DataParallel
# the model gets replicated, making it no longer guaranteed that the
# weights are contiguous in GPU memory. Hence, we must call it again
self._flatten_parameters()
# Save these for later
residual = x
seq_len = x.size(-1)
conv_bank = []
# Convolution Bank
for conv in self.conv1d_bank:
c = conv(x) # Convolution
conv_bank.append(c[:, :, :seq_len])
# Stack along the channel axis
conv_bank = torch.cat(conv_bank, dim=1)
# dump the last padding to fit residual
x = self.maxpool(conv_bank)[:, :, :seq_len]
# Conv1d projections
x = self.conv_project1(x)
x = self.conv_project2(x)
# Residual Connect
x = x + residual
# Through the highways
x = x.transpose(1, 2)
if self.highway_mismatch is True:
x = self.pre_highway(x)
for h in self.highways: x = h(x)
# And then the RNN
x, _ = self.rnn(x)
return x
def _flatten_parameters(self):
"""Calls `flatten_parameters` on all the rnns used by the WaveRNN. Used
to improve efficiency and avoid PyTorch yelling at us."""
[m.flatten_parameters() for m in self._to_flatten]
class PreNet(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=True)
x = self.fc2(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=True)
return x
class Attention(nn.Module):
def __init__(self, attn_dims):
super().__init__()
self.W = nn.Linear(attn_dims, attn_dims, bias=False)
self.v = nn.Linear(attn_dims, 1, bias=False)
def forward(self, encoder_seq_proj, query, t):
# print(encoder_seq_proj.shape)
# Transform the query vector
query_proj = self.W(query).unsqueeze(1)
# Compute the scores
u = self.v(torch.tanh(encoder_seq_proj + query_proj))
scores = F.softmax(u, dim=1)
return scores.transpose(1, 2)
class LSA(nn.Module):
def __init__(self, attn_dim, kernel_size=31, filters=32):
super().__init__()
self.conv = nn.Conv1d(1, filters, padding=(kernel_size - 1) // 2, kernel_size=kernel_size, bias=True)
self.L = nn.Linear(filters, attn_dim, bias=False)
self.W = nn.Linear(attn_dim, attn_dim, bias=True) # Include the attention bias in this term
self.v = nn.Linear(attn_dim, 1, bias=False)
self.cumulative = None
self.attention = None
def init_attention(self, encoder_seq_proj):
device = next(self.parameters()).device # use same device as parameters
b, t, c = encoder_seq_proj.size()
self.cumulative = torch.zeros(b, t, device=device)
self.attention = torch.zeros(b, t, device=device)
def forward(self, encoder_seq_proj, query, t, chars):
if t == 0: self.init_attention(encoder_seq_proj)
processed_query = self.W(query).unsqueeze(1)
location = self.cumulative.unsqueeze(1)
processed_loc = self.L(self.conv(location).transpose(1, 2))
u = self.v(torch.tanh(processed_query + encoder_seq_proj + processed_loc))
u = u.squeeze(-1)
# Mask zero padding chars
u = u * (chars != 0).float()
# Smooth Attention
# scores = torch.sigmoid(u) / torch.sigmoid(u).sum(dim=1, keepdim=True)
scores = F.softmax(u, dim=1)
self.attention = scores
self.cumulative = self.cumulative + self.attention
return scores.unsqueeze(-1).transpose(1, 2)
class Decoder(nn.Module):
# Class variable because its value doesn't change between classes
# yet ought to be scoped by class because its a property of a Decoder
max_r = 20
def __init__(self, n_mels, encoder_dims, decoder_dims, lstm_dims,
dropout, speaker_embedding_size):
super().__init__()
self.register_buffer("r", torch.tensor(1, dtype=torch.int))
self.n_mels = n_mels
prenet_dims = (decoder_dims * 2, decoder_dims * 2)
self.prenet = PreNet(n_mels, fc1_dims=prenet_dims[0], fc2_dims=prenet_dims[1],
dropout=dropout)
self.attn_net = LSA(decoder_dims)
self.attn_rnn = nn.GRUCell(encoder_dims + prenet_dims[1] + speaker_embedding_size, decoder_dims)
self.rnn_input = nn.Linear(encoder_dims + decoder_dims + speaker_embedding_size, lstm_dims)
self.res_rnn1 = nn.LSTMCell(lstm_dims, lstm_dims)
self.res_rnn2 = nn.LSTMCell(lstm_dims, lstm_dims)
self.mel_proj = nn.Linear(lstm_dims, n_mels * self.max_r, bias=False)
self.stop_proj = nn.Linear(encoder_dims + speaker_embedding_size + lstm_dims, 1)
def zoneout(self, prev, current, p=0.1):
device = next(self.parameters()).device # Use same device as parameters
mask = torch.zeros(prev.size(), device=device).bernoulli_(p)
return prev * mask + current * (1 - mask)
def forward(self, encoder_seq, encoder_seq_proj, prenet_in,
hidden_states, cell_states, context_vec, t, chars):
# Need this for reshaping mels
batch_size = encoder_seq.size(0)
# Unpack the hidden and cell states
attn_hidden, rnn1_hidden, rnn2_hidden = hidden_states
rnn1_cell, rnn2_cell = cell_states
# PreNet for the Attention RNN
prenet_out = self.prenet(prenet_in)
# Compute the Attention RNN hidden state
attn_rnn_in = torch.cat([context_vec, prenet_out], dim=-1)
attn_hidden = self.attn_rnn(attn_rnn_in.squeeze(1), attn_hidden)
# Compute the attention scores
scores = self.attn_net(encoder_seq_proj, attn_hidden, t, chars)
# Dot product to create the context vector
context_vec = scores @ encoder_seq
context_vec = context_vec.squeeze(1)
# Concat Attention RNN output w. Context Vector & project
x = torch.cat([context_vec, attn_hidden], dim=1)
x = self.rnn_input(x)
# Compute first Residual RNN
rnn1_hidden_next, rnn1_cell = self.res_rnn1(x, (rnn1_hidden, rnn1_cell))
if self.training:
rnn1_hidden = self.zoneout(rnn1_hidden, rnn1_hidden_next)
else:
rnn1_hidden = rnn1_hidden_next
x = x + rnn1_hidden
# Compute second Residual RNN
rnn2_hidden_next, rnn2_cell = self.res_rnn2(x, (rnn2_hidden, rnn2_cell))
if self.training:
rnn2_hidden = self.zoneout(rnn2_hidden, rnn2_hidden_next)
else:
rnn2_hidden = rnn2_hidden_next
x = x + rnn2_hidden
# Project Mels
mels = self.mel_proj(x)
mels = mels.view(batch_size, self.n_mels, self.max_r)[:, :, :self.r]
hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
cell_states = (rnn1_cell, rnn2_cell)
# Stop token prediction
s = torch.cat((x, context_vec), dim=1)
s = self.stop_proj(s)
stop_tokens = torch.sigmoid(s)
return mels, scores, hidden_states, cell_states, context_vec, stop_tokens
class Tacotron(nn.Module):
def __init__(self, embed_dims, num_chars, encoder_dims, decoder_dims, n_mels,
fft_bins, postnet_dims, encoder_K, lstm_dims, postnet_K, num_highways,
dropout, stop_threshold, speaker_embedding_size):
super().__init__()
self.n_mels = n_mels
self.lstm_dims = lstm_dims
self.encoder_dims = encoder_dims
self.decoder_dims = decoder_dims
self.speaker_embedding_size = speaker_embedding_size
self.encoder = Encoder(embed_dims, num_chars, encoder_dims,
encoder_K, num_highways, dropout)
self.encoder_proj = nn.Linear(encoder_dims + speaker_embedding_size, decoder_dims, bias=False)
self.decoder = Decoder(n_mels, encoder_dims, decoder_dims, lstm_dims,
dropout, speaker_embedding_size)
self.postnet = CBHG(postnet_K, n_mels, postnet_dims,
[postnet_dims, fft_bins], num_highways)
self.post_proj = nn.Linear(postnet_dims, fft_bins, bias=False)
self.init_model()
self.num_params()
self.register_buffer("step", torch.zeros(1, dtype=torch.long))
self.register_buffer("stop_threshold", torch.tensor(stop_threshold, dtype=torch.float32))
@property
def r(self):
return self.decoder.r.item()
@r.setter
def r(self, value):
self.decoder.r = self.decoder.r.new_tensor(value, requires_grad=False)
def forward(self, x, m, speaker_embedding):
device = next(self.parameters()).device # use same device as parameters
self.step += 1
batch_size, _, steps = m.size()
# Initialise all hidden states and pack into tuple
attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
# Initialise all lstm cell states and pack into tuple
rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
cell_states = (rnn1_cell, rnn2_cell)
# <GO> Frame for start of decoder loop
go_frame = torch.zeros(batch_size, self.n_mels, device=device)
# Need an initial context vector
context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device)
# SV2TTS: Run the encoder with the speaker embedding
# The projection avoids unnecessary matmuls in the decoder loop
encoder_seq = self.encoder(x, speaker_embedding)
encoder_seq_proj = self.encoder_proj(encoder_seq)
# Need a couple of lists for outputs
mel_outputs, attn_scores, stop_outputs = [], [], []
# Run the decoder loop
for t in range(0, steps, self.r):
prenet_in = m[:, :, t - 1] if t > 0 else go_frame
mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
hidden_states, cell_states, context_vec, t, x)
mel_outputs.append(mel_frames)
attn_scores.append(scores)
stop_outputs.extend([stop_tokens] * self.r)
# Concat the mel outputs into sequence
mel_outputs = torch.cat(mel_outputs, dim=2)
# Post-Process for Linear Spectrograms
postnet_out = self.postnet(mel_outputs)
linear = self.post_proj(postnet_out)
linear = linear.transpose(1, 2)
# For easy visualisation
attn_scores = torch.cat(attn_scores, 1)
# attn_scores = attn_scores.cpu().data.numpy()
stop_outputs = torch.cat(stop_outputs, 1)
return mel_outputs, linear, attn_scores, stop_outputs
def generate(self, x, speaker_embedding=None, steps=2000):
self.eval()
device = next(self.parameters()).device # use same device as parameters
batch_size, _ = x.size()
# Need to initialise all hidden states and pack into tuple for tidyness
attn_hidden = torch.zeros(batch_size, self.decoder_dims, device=device)
rnn1_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_hidden = torch.zeros(batch_size, self.lstm_dims, device=device)
hidden_states = (attn_hidden, rnn1_hidden, rnn2_hidden)
# Need to initialise all lstm cell states and pack into tuple for tidyness
rnn1_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
rnn2_cell = torch.zeros(batch_size, self.lstm_dims, device=device)
cell_states = (rnn1_cell, rnn2_cell)
# Need a <GO> Frame for start of decoder loop
go_frame = torch.zeros(batch_size, self.n_mels, device=device)
# Need an initial context vector
context_vec = torch.zeros(batch_size, self.encoder_dims + self.speaker_embedding_size, device=device)
# SV2TTS: Run the encoder with the speaker embedding
# The projection avoids unnecessary matmuls in the decoder loop
encoder_seq = self.encoder(x, speaker_embedding)
encoder_seq_proj = self.encoder_proj(encoder_seq)
# Need a couple of lists for outputs
mel_outputs, attn_scores, stop_outputs = [], [], []
# Run the decoder loop
for t in range(0, steps, self.r):
prenet_in = mel_outputs[-1][:, :, -1] if t > 0 else go_frame
mel_frames, scores, hidden_states, cell_states, context_vec, stop_tokens = \
self.decoder(encoder_seq, encoder_seq_proj, prenet_in,
hidden_states, cell_states, context_vec, t, x)
mel_outputs.append(mel_frames)
attn_scores.append(scores)
stop_outputs.extend([stop_tokens] * self.r)
# Stop the loop when all stop tokens in batch exceed threshold
if (stop_tokens > 0.5).all() and t > 10: break
# Concat the mel outputs into sequence
mel_outputs = torch.cat(mel_outputs, dim=2)
# Post-Process for Linear Spectrograms
postnet_out = self.postnet(mel_outputs)
linear = self.post_proj(postnet_out)
linear = linear.transpose(1, 2)
# For easy visualisation
attn_scores = torch.cat(attn_scores, 1)
stop_outputs = torch.cat(stop_outputs, 1)
self.train()
return mel_outputs, linear, attn_scores
def init_model(self):
for p in self.parameters():
if p.dim() > 1: nn.init.xavier_uniform_(p)
def get_step(self):
return self.step.data.item()
def reset_step(self):
# assignment to parameters or buffers is overloaded, updates internal dict entry
self.step = self.step.data.new_tensor(1)
def log(self, path, msg):
with open(path, "a") as f:
print(msg, file=f)
def load(self, path, optimizer=None):
# Use device of model params as location for loaded state
device = next(self.parameters()).device
checkpoint = torch.load(str(path), map_location=device)
self.load_state_dict(checkpoint["model_state"])
if "optimizer_state" in checkpoint and optimizer is not None:
optimizer.load_state_dict(checkpoint["optimizer_state"])
def save(self, path, optimizer=None):
if optimizer is not None:
torch.save({
"model_state": self.state_dict(),
"optimizer_state": optimizer.state_dict(),
}, str(path))
else:
torch.save({
"model_state": self.state_dict(),
}, str(path))
def num_params(self, print_out=True):
parameters = filter(lambda p: p.requires_grad, self.parameters())
parameters = sum([np.prod(p.size()) for p in parameters]) / 1_000_000
if print_out:
print("Trainable Parameters: %.3fM" % parameters)
return parameters