Spaces:
Runtime error
Runtime error
from encoder.params_model import model_embedding_size as speaker_embedding_size | |
from utils.argutils import print_args | |
from utils.modelutils import check_model_paths | |
from synthesizer.inference import Synthesizer | |
from encoder import inference as encoder | |
from vocoder import inference as vocoder | |
from pathlib import Path | |
import numpy as np | |
import soundfile as sf | |
import librosa | |
import argparse | |
import torch | |
import sys | |
import os | |
from audioread.exceptions import NoBackendError | |
if __name__ == '__main__': | |
## Info & args | |
parser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter | |
) | |
parser.add_argument("-e", "--enc_model_fpath", type=Path, | |
default="encpretrained.pt", | |
help="Path to a saved encoder") | |
parser.add_argument("-s", "--syn_model_fpath", type=Path, | |
default="synpretrained.pt", | |
help="Path to a saved synthesizer") | |
parser.add_argument("-v", "--voc_model_fpath", type=Path, | |
default="vocpretrained.pt", | |
help="Path to a saved vocoder") | |
parser.add_argument("--cpu", action="store_true", help="If True, processing is done on CPU, even when a GPU is available.") | |
parser.add_argument("--no_sound", action="store_true", help="If True, audio won't be played.") | |
parser.add_argument("--seed", type=int, default=None, help="Optional random number seed value to make toolbox deterministic.") | |
parser.add_argument("--no_mp3_support", action="store_true", help="If True, disallows loading mp3 files to prevent audioread errors when ffmpeg is not installed.") | |
parser.add_argument("-audio", "--audio_path", type=Path, required = True, | |
help="Path to a audio file") | |
parser.add_argument("--text", type=str, required = True, help="Text Input") | |
args = parser.parse_args() | |
print_args(args, parser) | |
if not args.no_sound: | |
import sounddevice as sd | |
if args.cpu: | |
# Hide GPUs from Pytorch to force CPU processing | |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
if not args.no_mp3_support: | |
try: | |
librosa.load("samples/1320_00000.mp3") | |
except NoBackendError: | |
print("Librosa will be unable to open mp3 files if additional software is not installed.\n" | |
"Please install ffmpeg or add the '--no_mp3_support' option to proceed without support for mp3 files.") | |
exit(-1) | |
print("Running a test of your configuration...\n") | |
if torch.cuda.is_available(): | |
device_id = torch.cuda.current_device() | |
gpu_properties = torch.cuda.get_device_properties(device_id) | |
## Print some environment information (for debugging purposes) | |
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with " | |
"%.1fGb total memory.\n" % | |
(torch.cuda.device_count(), | |
device_id, | |
gpu_properties.name, | |
gpu_properties.major, | |
gpu_properties.minor, | |
gpu_properties.total_memory / 1e9)) | |
else: | |
print("Using CPU for inference.\n") | |
## Remind the user to download pretrained models if needed | |
check_model_paths(encoder_path=args.enc_model_fpath, | |
synthesizer_path=args.syn_model_fpath, | |
vocoder_path=args.voc_model_fpath) | |
## Load the models one by one. | |
print("Preparing the encoder, the synthesizer and the vocoder...") | |
encoder.load_model(args.enc_model_fpath) | |
synthesizer = Synthesizer(args.syn_model_fpath) | |
vocoder.load_model(args.voc_model_fpath) | |
## Run a test | |
# print("Testing your configuration with small inputs.") | |
# # Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's | |
# # sampling rate, which may differ. | |
# # If you're unfamiliar with digital audio, know that it is encoded as an array of floats | |
# # (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1. | |
# # The sampling rate is the number of values (samples) recorded per second, it is set to | |
# # 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond | |
# # to an audio of 1 second. | |
# print(" Testing the encoder...") | |
# encoder.embed_utterance(np.zeros(encoder.sampling_rate)) | |
# # Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance | |
# # returns, but here we're going to make one ourselves just for the sake of showing that it's | |
# # possible. | |
# embed = np.random.rand(speaker_embedding_size) | |
# # Embeddings are L2-normalized (this isn't important here, but if you want to make your own | |
# # embeddings it will be). | |
# embed /= np.linalg.norm(embed) | |
# # The synthesizer can handle multiple inputs with batching. Let's create another embedding to | |
# # illustrate that | |
# embeds = [embed, np.zeros(speaker_embedding_size)] | |
# texts = ["test 1", "test 2"] | |
# print(" Testing the synthesizer... (loading the model will output a lot of text)") | |
# mels = synthesizer.synthesize_spectrograms(texts, embeds) | |
# # The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We | |
# # can concatenate the mel spectrograms to a single one. | |
# mel = np.concatenate(mels, axis=1) | |
# # The vocoder can take a callback function to display the generation. More on that later. For | |
# # now we'll simply hide it like this: | |
# no_action = lambda *args: None | |
# print(" Testing the vocoder...") | |
# # For the sake of making this test short, we'll pass a short target length. The target length | |
# # is the length of the wav segments that are processed in parallel. E.g. for audio sampled | |
# # at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of | |
# # 0.5 seconds which will all be generated together. The parameters here are absurdly short, and | |
# # that has a detrimental effect on the quality of the audio. The default parameters are | |
# # recommended in general. | |
# vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action) | |
print("All test passed! You can now synthesize speech.\n\n") | |
## Interactive speech generation | |
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to " | |
"show how you can interface this project easily with your own. See the source code for " | |
"an explanation of what is happening.\n") | |
print("Interactive generation loop") | |
# while True: | |
# Get the reference audio filepath | |
message = "Reference voice: enter an audio filepath of a voice to be cloned (mp3, " "wav, m4a, flac, ...):\n" | |
in_fpath = args.audio_path | |
if in_fpath.suffix.lower() == ".mp3" and args.no_mp3_support: | |
print("Can't Use mp3 files please try again:") | |
## Computing the embedding | |
# First, we load the wav using the function that the speaker encoder provides. This is | |
# important: there is preprocessing that must be applied. | |
# The following two methods are equivalent: | |
# - Directly load from the filepath: | |
preprocessed_wav = encoder.preprocess_wav(in_fpath) | |
# - If the wav is already loaded: | |
original_wav, sampling_rate = librosa.load(str(in_fpath)) | |
preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate) | |
print("Loaded file succesfully") | |
# Then we derive the embedding. There are many functions and parameters that the | |
# speaker encoder interfaces. These are mostly for in-depth research. You will typically | |
# only use this function (with its default parameters): | |
embed = encoder.embed_utterance(preprocessed_wav) | |
print("Created the embedding") | |
## Generating the spectrogram | |
text = args.text | |
# If seed is specified, reset torch seed and force synthesizer reload | |
if args.seed is not None: | |
torch.manual_seed(args.seed) | |
synthesizer = Synthesizer(args.syn_model_fpath) | |
# The synthesizer works in batch, so you need to put your data in a list or numpy array | |
texts = [text] | |
embeds = [embed] | |
# If you know what the attention layer alignments are, you can retrieve them here by | |
# passing return_alignments=True | |
specs = synthesizer.synthesize_spectrograms(texts, embeds) | |
spec = specs[0] | |
print("Created the mel spectrogram") | |
## Generating the waveform | |
print("Synthesizing the waveform:") | |
# If seed is specified, reset torch seed and reload vocoder | |
if args.seed is not None: | |
torch.manual_seed(args.seed) | |
vocoder.load_model(args.voc_model_fpath) | |
# Synthesizing the waveform is fairly straightforward. Remember that the longer the | |
# spectrogram, the more time-efficient the vocoder. | |
generated_wav = vocoder.infer_waveform(spec) | |
## Post-generation | |
# There's a bug with sounddevice that makes the audio cut one second earlier, so we | |
# pad it. | |
generated_wav = np.pad(generated_wav, (0, synthesizer.sample_rate), mode="constant") | |
# Trim excess silences to compensate for gaps in spectrograms (issue #53) | |
generated_wav = encoder.preprocess_wav(generated_wav) | |
# Play the audio (non-blocking) | |
if not args.no_sound: | |
try: | |
sd.stop() | |
sd.play(generated_wav, synthesizer.sample_rate) | |
except sd.PortAudioError as e: | |
print("\nCaught exception: %s" % repr(e)) | |
print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n") | |
except: | |
raise | |
# Save it on the disk | |
filename = "demo_output_1.wav" | |
print(generated_wav.dtype) | |
sf.write(filename, generated_wav.astype(np.float32), synthesizer.sample_rate) | |
print("\nSaved output as %s\n\n" % filename) | |