Spaces:
Runtime error
Runtime error
File size: 10,456 Bytes
24829a1 7f7f412 24829a1 7f7f412 24829a1 7f7f412 24829a1 1b12cc3 c8546f3 1b12cc3 24829a1 a32e829 24829a1 a32e829 24829a1 a32e829 24829a1 c8546f3 1b12cc3 c8546f3 24829a1 c8546f3 24829a1 c8546f3 24829a1 c8546f3 24829a1 c8546f3 24829a1 c8546f3 24829a1 c8546f3 1b12cc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
from encoder.params_model import model_embedding_size as speaker_embedding_size
from utils.argutils import print_args
from utils.modelutils import check_model_paths
from synthesizer.inference import Synthesizer
from encoder import inference as encoder
from vocoder import inference as vocoder
from pathlib import Path
import numpy as np
import soundfile as sf
import librosa
import argparse
import torch
import sys
import os
from audioread.exceptions import NoBackendError
if __name__ == '__main__':
## Info & args
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("-e", "--enc_model_fpath", type=Path,
default="encpretrained.pt",
help="Path to a saved encoder")
parser.add_argument("-s", "--syn_model_fpath", type=Path,
default="synpretrained.pt",
help="Path to a saved synthesizer")
parser.add_argument("-v", "--voc_model_fpath", type=Path,
default="vocpretrained.pt",
help="Path to a saved vocoder")
parser.add_argument("--cpu", action="store_true", help="If True, processing is done on CPU, even when a GPU is available.")
parser.add_argument("--no_sound", action="store_true", help="If True, audio won't be played.")
parser.add_argument("--seed", type=int, default=None, help="Optional random number seed value to make toolbox deterministic.")
parser.add_argument("--no_mp3_support", action="store_true", help="If True, disallows loading mp3 files to prevent audioread errors when ffmpeg is not installed.")
parser.add_argument("-audio", "--audio_path", type=Path, required = True,
help="Path to a audio file")
parser.add_argument("--text", type=str, required = True, help="Text Input")
args = parser.parse_args()
print_args(args, parser)
if not args.no_sound:
import sounddevice as sd
if args.cpu:
# Hide GPUs from Pytorch to force CPU processing
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
if not args.no_mp3_support:
try:
librosa.load("samples/1320_00000.mp3")
except NoBackendError:
print("Librosa will be unable to open mp3 files if additional software is not installed.\n"
"Please install ffmpeg or add the '--no_mp3_support' option to proceed without support for mp3 files.")
exit(-1)
print("Running a test of your configuration...\n")
if torch.cuda.is_available():
device_id = torch.cuda.current_device()
gpu_properties = torch.cuda.get_device_properties(device_id)
## Print some environment information (for debugging purposes)
print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with "
"%.1fGb total memory.\n" %
(torch.cuda.device_count(),
device_id,
gpu_properties.name,
gpu_properties.major,
gpu_properties.minor,
gpu_properties.total_memory / 1e9))
else:
print("Using CPU for inference.\n")
## Remind the user to download pretrained models if needed
check_model_paths(encoder_path=args.enc_model_fpath,
synthesizer_path=args.syn_model_fpath,
vocoder_path=args.voc_model_fpath)
## Load the models one by one.
print("Preparing the encoder, the synthesizer and the vocoder...")
encoder.load_model(args.enc_model_fpath)
synthesizer = Synthesizer(args.syn_model_fpath)
vocoder.load_model(args.voc_model_fpath)
## Run a test
# print("Testing your configuration with small inputs.")
# # Forward an audio waveform of zeroes that lasts 1 second. Notice how we can get the encoder's
# # sampling rate, which may differ.
# # If you're unfamiliar with digital audio, know that it is encoded as an array of floats
# # (or sometimes integers, but mostly floats in this projects) ranging from -1 to 1.
# # The sampling rate is the number of values (samples) recorded per second, it is set to
# # 16000 for the encoder. Creating an array of length <sampling_rate> will always correspond
# # to an audio of 1 second.
# print(" Testing the encoder...")
# encoder.embed_utterance(np.zeros(encoder.sampling_rate))
# # Create a dummy embedding. You would normally use the embedding that encoder.embed_utterance
# # returns, but here we're going to make one ourselves just for the sake of showing that it's
# # possible.
# embed = np.random.rand(speaker_embedding_size)
# # Embeddings are L2-normalized (this isn't important here, but if you want to make your own
# # embeddings it will be).
# embed /= np.linalg.norm(embed)
# # The synthesizer can handle multiple inputs with batching. Let's create another embedding to
# # illustrate that
# embeds = [embed, np.zeros(speaker_embedding_size)]
# texts = ["test 1", "test 2"]
# print(" Testing the synthesizer... (loading the model will output a lot of text)")
# mels = synthesizer.synthesize_spectrograms(texts, embeds)
# # The vocoder synthesizes one waveform at a time, but it's more efficient for long ones. We
# # can concatenate the mel spectrograms to a single one.
# mel = np.concatenate(mels, axis=1)
# # The vocoder can take a callback function to display the generation. More on that later. For
# # now we'll simply hide it like this:
# no_action = lambda *args: None
# print(" Testing the vocoder...")
# # For the sake of making this test short, we'll pass a short target length. The target length
# # is the length of the wav segments that are processed in parallel. E.g. for audio sampled
# # at 16000 Hertz, a target length of 8000 means that the target audio will be cut in chunks of
# # 0.5 seconds which will all be generated together. The parameters here are absurdly short, and
# # that has a detrimental effect on the quality of the audio. The default parameters are
# # recommended in general.
# vocoder.infer_waveform(mel, target=200, overlap=50, progress_callback=no_action)
print("All test passed! You can now synthesize speech.\n\n")
## Interactive speech generation
print("This is a GUI-less example of interface to SV2TTS. The purpose of this script is to "
"show how you can interface this project easily with your own. See the source code for "
"an explanation of what is happening.\n")
print("Interactive generation loop")
# while True:
try:
# Get the reference audio filepath
message = "Reference voice: enter an audio filepath of a voice to be cloned (mp3, " "wav, m4a, flac, ...):\n"
in_fpath = args.audio_path
if in_fpath.suffix.lower() == ".mp3" and args.no_mp3_support:
print("Can't Use mp3 files please try again:")
## Computing the embedding
# First, we load the wav using the function that the speaker encoder provides. This is
# important: there is preprocessing that must be applied.
# The following two methods are equivalent:
# - Directly load from the filepath:
preprocessed_wav = encoder.preprocess_wav(in_fpath)
# - If the wav is already loaded:
original_wav, sampling_rate = librosa.load(str(in_fpath))
preprocessed_wav = encoder.preprocess_wav(original_wav, sampling_rate)
print("Loaded file succesfully")
# Then we derive the embedding. There are many functions and parameters that the
# speaker encoder interfaces. These are mostly for in-depth research. You will typically
# only use this function (with its default parameters):
embed = encoder.embed_utterance(preprocessed_wav)
print("Created the embedding")
## Generating the spectrogram
text = args.text
# If seed is specified, reset torch seed and force synthesizer reload
if args.seed is not None:
torch.manual_seed(args.seed)
synthesizer = Synthesizer(args.syn_model_fpath)
# The synthesizer works in batch, so you need to put your data in a list or numpy array
texts = [text]
embeds = [embed]
# If you know what the attention layer alignments are, you can retrieve them here by
# passing return_alignments=True
specs = synthesizer.synthesize_spectrograms(texts, embeds)
spec = specs[0]
print("Created the mel spectrogram")
## Generating the waveform
print("Synthesizing the waveform:")
# If seed is specified, reset torch seed and reload vocoder
if args.seed is not None:
torch.manual_seed(args.seed)
vocoder.load_model(args.voc_model_fpath)
# Synthesizing the waveform is fairly straightforward. Remember that the longer the
# spectrogram, the more time-efficient the vocoder.
generated_wav = vocoder.infer_waveform(spec)
## Post-generation
# There's a bug with sounddevice that makes the audio cut one second earlier, so we
# pad it.
generated_wav = np.pad(generated_wav, (0, synthesizer.sample_rate), mode="constant")
# Trim excess silences to compensate for gaps in spectrograms (issue #53)
generated_wav = encoder.preprocess_wav(generated_wav)
# Play the audio (non-blocking)
if not args.no_sound:
try:
sd.stop()
sd.play(generated_wav, synthesizer.sample_rate)
except sd.PortAudioError as e:
print("\nCaught exception: %s" % repr(e))
print("Continuing without audio playback. Suppress this message with the \"--no_sound\" flag.\n")
except:
raise
# Save it on the disk
filename = "demo_output_1.wav"
print(generated_wav.dtype)
sf.write(filename, generated_wav.astype(np.float32), synthesizer.sample_rate)
print("\nSaved output as %s\n\n" % filename)
except Exception as e:
print("Caught exception: %s" % repr(e))
print("Restarting\n")
|