File size: 2,500 Bytes
e40c95c
8b4fce0
e40c95c
 
 
 
 
 
 
011c077
e40c95c
d408b90
 
b92fc44
0956b85
a7db858
 
e40c95c
 
 
 
 
 
 
273d6eb
24f9520
2683afa
 
f1d72e1
e40c95c
 
f1d72e1
e40c95c
 
 
 
 
 
 
 
 
 
 
 
f1d72e1
8f2e8f4
f1d72e1
8f2e8f4
e40c95c
 
433d043
d408b90
 
78eae8c
cf58652
78eae8c
e40c95c
 
819aa93
d894966
e40c95c
 
 
 
78eae8c
f61504e
 
9d7cbe1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
os.system("pip install gradio==2.9b23")
import random
import gradio as gr
from PIL import Image
import torch
from random import randint
import sys
from subprocess import call
import psutil




torch.hub.download_url_to_file('http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution_files/100075_lowres.jpg', 'bear.jpg')
  
    
def run_cmd(command):
    try:
        print(command)
        call(command, shell=True)
    except KeyboardInterrupt:
        print("Process interrupted")
        sys.exit(1)
run_cmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P .")
run_cmd("pip install basicsr")
run_cmd("pip freeze")

os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P .")


def inference(img,mode):
    _id = randint(1, 10000)
    INPUT_DIR = "/tmp/input_image" + str(_id) + "/"
    OUTPUT_DIR = "/tmp/output_image" + str(_id) + "/"
    run_cmd("rm -rf " + INPUT_DIR)
    run_cmd("rm -rf " + OUTPUT_DIR)
    run_cmd("mkdir " + INPUT_DIR)
    run_cmd("mkdir " + OUTPUT_DIR)
    basewidth = 256
    wpercent = (basewidth/float(img.size[0]))
    hsize = int((float(img.size[1])*float(wpercent)))
    img = img.resize((basewidth,hsize), Image.ANTIALIAS)
    img.save(INPUT_DIR + "1.jpg", "JPEG")
    if mode == "base":
        run_cmd("python inference_realesrgan.py -n RealESRGAN_x4plus -i "+ INPUT_DIR + " -o " + OUTPUT_DIR)
    else:
        os.system("python inference_realesrgan.py -n RealESRGAN_x4plus_anime_6B -i "+ INPUT_DIR + " -o " + OUTPUT_DIR)
    return os.path.join(OUTPUT_DIR, "1_out.jpg")



        
title = "Real-ESRGAN"
description = "Gradio demo for Real-ESRGAN. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please click submit only once"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/xinntao/Real-ESRGAN'>Github Repo</a></p>"

gr.Interface(
    inference, 
    [gr.inputs.Image(type="pil", label="Input"),gr.inputs.Radio(["base","anime"], type="value", default="base", label="model type")], 
    gr.outputs.Image(type="file", label="Output"),
    title=title,
    description=description,
    article=article,
    examples=[
    ['bear.jpg','base'],
    ['anime.png','anime']
    ]).launch()