Spaces:
Build error
Build error
import tensorflow as tf | |
def embedding_lookup(lookup_table, x): | |
return tf.compat.v1.nn.embedding_lookup(lookup_table, x) | |
def normal_embedding_lookup(x, n_token, d_embed, d_proj, initializer, | |
proj_initializer, scope='normal_embed', **kwargs): | |
emb_scale = d_proj ** 0.5 | |
with tf.compat.v1.variable_scope(scope): | |
lookup_table = tf.compat.v1.get_variable('lookup_table', [n_token, d_embed], initializer=initializer) | |
y = embedding_lookup(lookup_table, x) | |
if d_proj != d_embed: | |
proj_W = tf.compat.v1.get_variable('proj_W', [d_embed, d_proj], initializer=proj_initializer) | |
y = tf.einsum('ibe,ed->ibd', y, proj_W) | |
else: | |
proj_W = None | |
ret_params = [lookup_table, proj_W] | |
y *= emb_scale | |
return y, ret_params | |
def normal_softmax(hidden, target, n_token, params, scope='normal_softmax', **kwargs): | |
def _logit(x, W, b, proj): | |
y = x | |
if proj is not None: | |
y = tf.einsum('ibd,ed->ibe', y, proj) | |
return tf.einsum('ibd,nd->ibn', y, W) + b | |
params_W, params_projs = params[0], params[1] | |
with tf.compat.v1.variable_scope(scope): | |
softmax_b = tf.compat.v1.get_variable('bias', [n_token], initializer=tf.zeros_initializer()) | |
output = _logit(hidden, params_W, softmax_b, params_projs) | |
nll = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) | |
return nll, output | |
def positional_embedding(pos_seq, inv_freq, bsz=None): | |
sinusoid_inp = tf.einsum('i,j->ij', pos_seq, inv_freq) | |
pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) | |
if bsz is not None: | |
return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) | |
else: | |
return pos_emb[:, None, :] | |
def positionwise_FF(inp, d_model, d_inner, dropout, kernel_initializer, | |
scope='ff', is_training=True): | |
output = inp | |
with tf.compat.v1.variable_scope(scope): | |
output = tf.keras.layers.Dense(d_inner, activation=tf.nn.relu, | |
kernel_initializer=kernel_initializer, name='layer_1')(inp) | |
output = tf.keras.layers.Dropout(dropout, name='drop_1')(output, training=is_training) | |
output = tf.keras.layers.Dense(d_model, activation=tf.nn.relu, | |
kernel_initializer=kernel_initializer, name='layer_2')(output) | |
output = tf.keras.layers.Dropout(dropout, name='drop_2')(output, training=is_training) | |
output = tf.keras.layers.LayerNormalization(axis=-1)(output + inp) | |
return output | |
def _create_mask(qlen, mlen, same_length=False): | |
attn_mask = tf.ones([qlen, qlen]) | |
mask_u = tf.linalg.band_part(attn_mask, 0, -1) | |
mask_dia = tf.linalg.band_part(attn_mask, 0, 0) | |
attn_mask_pad = tf.zeros([qlen, mlen]) | |
ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) | |
if same_length: | |
mask_l = tf.matrix_band_part(attn_mask, -1, 0) | |
ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) | |
return ret | |
def _cache_mem(curr_out, prev_mem, mem_len=None): | |
if mem_len is None or prev_mem is None: | |
new_mem = curr_out | |
elif mem_len == 0: | |
return prev_mem | |
else: | |
new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:] | |
return tf.stop_gradient(new_mem) | |
def rel_shift(x): | |
x_size = tf.shape(x) | |
x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]]) | |
x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]]) | |
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) | |
x = tf.reshape(x, x_size) | |
return x | |
def rel_multihead_attn(w, r, r_w_bias, r_r_bias, attn_mask, mems, d_model, | |
n_head, d_head, dropout, dropatt, is_training, | |
kernel_initializer, scope='rel_attn'): | |
scale = 1 / (d_head ** 0.5) | |
with tf.compat.v1.variable_scope(scope): | |
qlen = tf.shape(w)[0] | |
rlen = tf.shape(r)[0] | |
bsz = tf.shape(w)[1] | |
cat = tf.concat([mems, w], 0) if mems is not None and mems.shape.ndims > 1 else w | |
w_heads = tf.keras.layers.Dense(3 * n_head * d_head, use_bias=False, | |
kernel_initializer=kernel_initializer, name='qkv')(cat) | |
r_head_k = tf.keras.layers.Dense(n_head * d_head, use_bias=False, | |
kernel_initializer=kernel_initializer, name='r')(r) | |
w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, -1) | |
w_head_q = w_head_q[-qlen:] | |
klen = tf.shape(w_head_k)[0] | |
w_head_q = tf.reshape(w_head_q, [qlen, bsz, n_head, d_head]) | |
w_head_k = tf.reshape(w_head_k, [klen, bsz, n_head, d_head]) | |
w_head_v = tf.reshape(w_head_v, [klen, bsz, n_head, d_head]) | |
r_head_k = tf.reshape(r_head_k, [rlen, n_head, d_head]) | |
rw_head_q = w_head_q + r_w_bias | |
rr_head_q = w_head_q + r_r_bias | |
AC = tf.einsum('ibnd,jbnd->ijbn', rw_head_q, w_head_k) | |
BD = tf.einsum('ibnd,jnd->ijbn', rr_head_q, r_head_k) | |
BD = rel_shift(BD) | |
attn_score = (AC + BD) * scale | |
attn_mask_t = attn_mask[:, :, None, None] | |
attn_score = attn_score * (1 - attn_mask_t) - 1e30 * attn_mask_t | |
attn_prob = tf.nn.softmax(attn_score, 1) | |
attn_prob = tf.keras.layers.Dropout(dropatt)(attn_prob, training=is_training) | |
attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, w_head_v) | |
size_t = tf.shape(attn_vec) | |
attn_vec = tf.reshape(attn_vec, [size_t[0], size_t[1], n_head * d_head]) | |
attn_out = tf.keras.layers.Dense(d_model, use_bias=False, | |
kernel_initializer=kernel_initializer, name='o')(attn_vec) | |
attn_out = tf.keras.layers.Dropout(dropout)(attn_out, training=is_training) | |
output = tf.keras.layers.LayerNormalization(axis=-1)(attn_out + w) | |
return output | |
def transformer(dec_inp, target, mems, n_token, n_layer, d_model, d_embed, | |
n_head, d_head, d_inner, dropout, dropatt, | |
initializer, is_training, proj_initializer=None, | |
mem_len=None, cutoffs=[], div_val=1, tie_projs=[], | |
same_length=False, clamp_len=-1, | |
input_perms=None, target_perms=None, head_target=None, | |
untie_r=False, proj_same_dim=True, | |
scope='transformer'): | |
""" | |
cutoffs: a list of python int. Cutoffs for adaptive softmax. | |
tie_projs: a list of python bools. Whether to tie the projections. | |
perms: a list of tensors. Each tensor should of size [len, bsz, bin_size]. | |
Only used in the adaptive setting. | |
""" | |
new_mems = [] | |
with tf.compat.v1.variable_scope(scope): | |
if untie_r: | |
r_w_bias = tf.compat.v1.get_variable('r_w_bias', [n_layer, n_head, d_head], initializer=initializer) | |
r_r_bias = tf.compat.v1.get_variable('r_r_bias', [n_layer, n_head, d_head], initializer=initializer) | |
else: | |
r_w_bias = tf.compat.v1.get_variable('r_w_bias', [n_head, d_head], initializer=initializer) | |
r_r_bias = tf.compat.v1.get_variable('r_r_bias', [n_head, d_head], initializer=initializer) | |
qlen = tf.shape(dec_inp)[0] | |
mlen = tf.shape(mems[0])[0] if mems is not None else 0 | |
klen = qlen + mlen | |
if proj_initializer is None: | |
proj_initializer = initializer | |
embeddings, shared_params = normal_embedding_lookup( | |
x=dec_inp, | |
n_token=n_token, | |
d_embed=d_embed, | |
d_proj=d_model, | |
initializer=initializer, | |
proj_initializer=proj_initializer) | |
attn_mask = _create_mask(qlen, mlen, same_length) | |
pos_seq = tf.range(klen - 1, -1, -1.0) | |
if clamp_len > 0: | |
pos_seq = tf.minimum(pos_seq, clamp_len) | |
inv_freq = 1 / (10000 ** (tf.range(0, d_model, 2.0) / d_model)) | |
pos_emb = positional_embedding(pos_seq, inv_freq) | |
output = tf.keras.layers.Dropout(rate=dropout)(embeddings, training=is_training) | |
pos_emb = tf.keras.layers.Dropout(rate=dropout)(pos_emb, training=is_training) | |
if mems is None: | |
mems = [None] * n_layer | |
for i in range(n_layer): | |
# cache new mems | |
new_mems.append(_cache_mem(output, mems[i], mem_len)) | |
with tf.compat.v1.variable_scope('layer_{}'.format(i)): | |
output = rel_multihead_attn( | |
w=output, | |
r=pos_emb, | |
r_w_bias=r_w_bias if not untie_r else r_w_bias[i], | |
r_r_bias=r_r_bias if not untie_r else r_r_bias[i], | |
attn_mask=attn_mask, | |
mems=mems[i], | |
d_model=d_model, | |
n_head=n_head, | |
d_head=d_head, | |
dropout=dropout, | |
dropatt=dropatt, | |
is_training=is_training, | |
kernel_initializer=initializer) | |
output = positionwise_FF( | |
inp=output, | |
d_model=d_model, | |
d_inner=d_inner, | |
dropout=dropout, | |
kernel_initializer=initializer, | |
is_training=is_training) | |
output = tf.keras.layers.Dropout(dropout)(output, training=is_training) | |
loss, logits = normal_softmax( | |
hidden=output, | |
target=target, | |
n_token=n_token, | |
params=shared_params) | |
return loss, logits, new_mems |