import inspect import os import traceback import numpy as np import pandas as pd import torch from matplotlib import pyplot as plt from generate import eval_func_param_names, eval_extra_columns, get_context, get_score_model, get_model, evaluate, \ inputs_kwargs_list, check_locals from prompter import Prompter from utils import clear_torch_cache, NullContext, get_kwargs def run_eval( # for local function: base_model=None, lora_weights=None, inference_server=None, prompt_type=None, prompt_dict=None, debug=None, chat=False, chat_context=None, stream_output=None, eval_filename=None, eval_prompts_only_num=None, eval_prompts_only_seed=None, eval_as_output=None, examples=None, memory_restriction_level=None, # for get_model: score_model=None, load_8bit=None, load_4bit=None, load_half=None, infer_devices=None, tokenizer_base_model=None, gpu_id=None, local_files_only=None, resume_download=None, use_auth_token=None, trust_remote_code=None, offload_folder=None, compile_model=None, # for evaluate args beyond what's already above, or things that are always dynamic and locally created temperature=None, top_p=None, top_k=None, num_beams=None, max_new_tokens=None, min_new_tokens=None, early_stopping=None, max_time=None, repetition_penalty=None, num_return_sequences=None, do_sample=None, langchain_mode=None, top_k_docs=None, chunk=None, chunk_size=None, document_choice=None, # for evaluate kwargs: src_lang=None, tgt_lang=None, concurrency_count=None, save_dir=None, sanitize_bot_response=None, model_state0=None, max_max_new_tokens=None, is_public=None, max_max_time=None, raise_generate_gpu_exceptions=None, load_db_if_exists=None, dbs=None, user_path=None, detect_user_path_changes_every_query=None, use_openai_embedding=None, use_openai_model=None, hf_embedding_model=None, db_type=None, n_jobs=None, first_para=None, text_limit=None, verbose=None, cli=None, reverse_docs=None, use_cache=None, auto_reduce_chunks=None, max_chunks=None, model_lock=None, force_langchain_evaluate=None, model_state_none=None, ): check_locals(**locals()) if eval_prompts_only_num > 0: np.random.seed(eval_prompts_only_seed) example1 = examples[-1] # pick reference example examples = [] responses = [] if eval_filename is None: # override default examples with shareGPT ones for human-level eval purposes only eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json' if not os.path.isfile(eval_filename): os.system( 'wget https://huggingface.co./datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename) import json data = json.load(open(eval_filename, 'rt')) # focus on data that starts with human, else likely chopped from other data turn_start = 0 # odd in general data = [x for x in data if len(x['conversations']) > turn_start + 1 and x['conversations'][turn_start]['from'] == 'human' and x['conversations'][turn_start + 1]['from'] == 'gpt'] for i in sorted(np.random.randint(0, len(data), size=eval_prompts_only_num)): assert data[i]['conversations'][turn_start]['from'] == 'human' instruction = data[i]['conversations'][turn_start]['value'] assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt' output = data[i]['conversations'][turn_start + 1]['value'] examplenew = example1.copy() assert not chat, "No gradio must use chat=False, uses nochat instruct" examplenew[eval_func_param_names.index('instruction_nochat')] = instruction examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input examplenew[eval_func_param_names.index('context')] = get_context(chat_context, prompt_type) examples.append(examplenew) responses.append(output) else: # get data, assume in correct format: json of rows of dict of instruction and output # only instruction is required import json data = json.load(open(eval_filename, 'rt')) for i in sorted(np.random.randint(0, len(data), size=eval_prompts_only_num)): examplenew = example1.copy() instruction = data[i]['instruction'] output = data[i].get('output', '') # not required assert not chat, "No gradio must use chat=False, uses nochat instruct" examplenew[eval_func_param_names.index('instruction_nochat')] = instruction examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input examplenew[eval_func_param_names.index('context')] = get_context(chat_context, prompt_type) examples.append(examplenew) responses.append(output) num_examples = len(examples) scoring_path = 'scoring' os.makedirs(scoring_path, exist_ok=True) if eval_as_output: used_base_model = 'gpt35' used_lora_weights = '' used_inference_server = '' else: used_base_model = str(base_model.split('/')[-1]) used_lora_weights = str(lora_weights.split('/')[-1]) used_inference_server = str(inference_server.split('/')[-1]) eval_out_filename = "df_scores_%s_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_prompts_only_num, eval_prompts_only_seed, eval_as_output, used_base_model, used_lora_weights, used_inference_server, ) eval_out_filename = os.path.join(scoring_path, eval_out_filename) # torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0 device = 'cpu' if n_gpus == 0 else 'cuda' context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device with context_class(device): # ensure was set right above before examples generated assert not stream_output, "stream_output=True does not make sense with example loop" import time from functools import partial # get score model smodel, stokenizer, sdevice = get_score_model(reward_type=True, **get_kwargs(get_score_model, exclude_names=['reward_type'], **locals())) if not eval_as_output: model, tokenizer, device = get_model(reward_type=False, **get_kwargs(get_model, exclude_names=['reward_type'], **locals())) model_dict = dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model, lora_weights=lora_weights, inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict) model_state = dict(model=model, tokenizer=tokenizer, device=device) model_state.update(model_dict) my_db_state = [None] fun = partial(evaluate, model_state, my_db_state, **get_kwargs(evaluate, exclude_names=['model_state', 'my_db_state'] + eval_func_param_names, **locals())) else: assert eval_prompts_only_num > 0 def get_response(*args, exi=0): # assumes same ordering of examples and responses yield responses[exi] fun = get_response t0 = time.time() score_dump = [] score_avg = 0 score_median = 0 for exi, ex in enumerate(examples): clear_torch_cache() instruction = ex[eval_func_param_names.index('instruction_nochat')] iinput = ex[eval_func_param_names.index('iinput_nochat')] context = ex[eval_func_param_names.index('context')] clear_torch_cache() print("") print("START" + "=" * 100) print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else ''))) print("-" * 105) # fun yields as generator, so have to iterate over it # Also means likely do NOT want --stream_output=True, else would show all generations t1 = time.time() gener = fun(*tuple(ex), exi=exi) if eval_as_output else fun(*tuple(ex)) for res_fun in gener: res = res_fun['response'] extra = res_fun['sources'] print(res) if smodel: score_with_prompt = False if score_with_prompt: data_point = dict(instruction=instruction, input=iinput, context=context) prompter = Prompter(prompt_type, prompt_dict, debug=debug, chat=chat, stream_output=stream_output) prompt = prompter.generate_prompt(data_point) else: # just raw input and output if eval_prompts_only_num > 0: # only our own examples have this filled at moment assert iinput in [None, ''], iinput # should be no iinput if not (chat_context and prompt_type == 'human_bot'): assert context in [None, ''], context # should be no context prompt = instruction if memory_restriction_level > 0: cutoff_len = 768 if memory_restriction_level <= 2 else 512 else: cutoff_len = tokenizer.model_max_length inputs = stokenizer(prompt, res, return_tensors="pt", truncation=True, max_length=cutoff_len) try: score = torch.sigmoid(smodel(**inputs).logits[0].float()).cpu().detach().numpy()[0] except torch.cuda.OutOfMemoryError as e: print("GPU OOM 1: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True) traceback.print_exc() score = 0.0 clear_torch_cache() except (Exception, RuntimeError) as e: if 'Expected all tensors to be on the same device' in str(e) or \ 'expected scalar type Half but found Float' in str(e) or \ 'probability tensor contains either' in str(e) or \ 'cublasLt ran into an error!' in str(e): print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True) traceback.print_exc() score = 0.0 clear_torch_cache() else: raise score_dump.append(ex + [prompt, res, score]) # dump every score in case abort df_scores = pd.DataFrame(score_dump, columns=eval_func_param_names + eval_extra_columns) df_scores.to_parquet(eval_out_filename, index=False) # plot histogram so far plt.figure(figsize=(10, 10)) plt.hist(df_scores['score'], bins=20) score_avg = np.mean(df_scores['score']) score_median = np.median(df_scores['score']) print("SCORE %s: %s So far: AVG: %s MEDIAN: %s" % (exi, score, score_avg, score_median), flush=True) plt.title("Score avg: %s median: %s" % (score_avg, score_median)) plt.savefig(eval_out_filename.replace('.parquet', '.png')) plt.close() print("END" + "=" * 102) print("") t2 = time.time() print("Time taken for example: %s Time taken so far: %.4f about %.4g per example" % ( t2 - t1, t2 - t0, (t2 - t0) / (1 + exi))) t1 = time.time() print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples)) print("Score avg: %s median: %s" % (score_avg, score_median), flush=True) return eval_out_filename