ajchri5's picture
Upload 3 files
0b2a06f verified
# -*- coding: utf-8 -*-
"""Assignment-2-IT164_ajchri5
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1RtE7mmtyUWwiuowgyQq4eCuH-ep_D1QQ
"""
# mount gd
from google.colab import drive
drive.mount('/content/drive')
# Commented out IPython magic to ensure Python compatibility.
# # token
# %%capture
# from google.colab import userdata
# hftoken=userdata.get('hftoken')
# Commented out IPython magic to ensure Python compatibility.
# # pi
# %%capture
# !pip install gradio
# !pip install huggingface_hub
# packages required for colab
!pip install gradio
!pip install transformers
!pip install torchaudio
!pip install fasttext
# fastText for language detection
!wget https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin
# imports required for colab
import gradio as gr
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline, EncoderDecoderCache
import torchaudio
import warnings
import fasttext
import pandas as pd
import csv
import os
# hides warnings with pysoundfile
warnings.filterwarnings("ignore", category=UserWarning, message="PySoundFile failed.*")
# load model 1 transcription
whisper_model_name = "openai/whisper-large"
processor = WhisperProcessor.from_pretrained(whisper_model_name)
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name)
# load model 2 translation
translation_model = pipeline("translation", model="Helsinki-NLP/opus-mt-ROMANCE-en")
# load additional model 3 language detection
lang_model = fasttext.load_model('lid.176.bin') # pre-trained model
# app usage history
history_data = []
# save data csv
def saveData(text, language, translated_text, confidence_score):
# gd path
file_path = '/content/drive/MyDrive/IT164/a2prompt.csv'
# check if file exists, if not make new one with headers
file_exists = os.path.isfile(file_path)
# open csv file to append data
with open(file_path, 'a', newline='', encoding='utf-8') as f:
w = csv.writer(f)
if not file_exists:
# write header if file is created
w.writerow(['Text', 'Language', 'Translation', 'Confidence Score'])
# write new data row
w.writerow([text, language, translated_text, confidence_score])
# load audio input and transcribe
def transcribe_audio(audio_file, sampling_rate=48000): # set to 48 kHz
# load audio file with torchaudio
waveform, sr = torchaudio.load(audio_file, normalize=True)
# max 16kHz (resample)
if sr != 16000:
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000) # resample to 16 kHz
waveform = transform(waveform)
sr = 16000 # update as 16 kHz
# whisperprocessor
inputs = processor(waveform.squeeze(0).numpy(), return_tensors="pt", sampling_rate=sr)
# generate transcription and handle "past_key_values deprecation" error
past_key_values = None
generated_ids = whisper_model.generate(
inputs["input_features"],
past_key_values=past_key_values
)
# encoderdecodercache (to handle past_key_values)
if past_key_values is not None:
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
return processor.decode(generated_ids[0], skip_special_tokens=True)
# detect language using fastText
def detect_language(text):
result = lang_model.predict(text) # predict language with fasttext
language = result[0][0].replace('__label__', '') # extract the predicted language label
score = result[1][0] # confidence score
return language, score
# translate text (to english)
def translate_text_to_english(text, source_lang="fr"):
# translate detected language
translation = translation_model(text, src_lang=source_lang, tgt_lang="en")
return translation[0]['translation_text']
# function to track history (save results to the list and save to csv)
def save_to_history(text, language, translation, confidence_score):
history_data.append([text, language, translation, confidence_score])
# save csv
saveData(text, language, translation, confidence_score)
# process audio, transcribe, detect language, and translate
def process_audio(audio_file):
transcription = transcribe_audio(audio_file, sampling_rate=48000) # use 48 kHz initially (mac rate)
language, score = detect_language(transcription) # detect language of the transcription
translated_text = translate_text_to_english(transcription, source_lang=language) # translate
save_to_history(transcription, language, translated_text, score) # save results
return transcription, language, score, translated_text
# update visibility of the history table in gradio
def update_vis(radio_value):
if radio_value == 'show':
return gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=True)
else:
return gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=False)
# gradio interface
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
audio_input = gr.Audio(label="Record your voice", type="filepath") # audio input
transcription_output = gr.Textbox(label="Transcription") # transcription output
language_output = gr.Textbox(label="Detected Language") # detected language output
score_output = gr.Textbox(label="Confidence Score") # confidence score output
translated_output = gr.Textbox(label="Translated Text to English") # translated text output
process_button = gr.Button("Process Audio") # button to process the audio
with gr.Column():
history = gr.Radio(['show', 'hide'], label="App usage history") # "show" or "hide" (history)
dataframe = gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=False)
# button click (process audio and display output)
process_button.click(fn=process_audio, inputs=[audio_input], outputs=[transcription_output, language_output, score_output, translated_output])
history.change(fn=update_vis, inputs=history, outputs=dataframe)
demo.launch(debug=True)