Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""Assignment-2-IT164_ajchri5 | |
Automatically generated by Colab. | |
Original file is located at | |
https://colab.research.google.com/drive/1RtE7mmtyUWwiuowgyQq4eCuH-ep_D1QQ | |
""" | |
# mount gd | |
from google.colab import drive | |
drive.mount('/content/drive') | |
# Commented out IPython magic to ensure Python compatibility. | |
# # token | |
# %%capture | |
# from google.colab import userdata | |
# hftoken=userdata.get('hftoken') | |
# Commented out IPython magic to ensure Python compatibility. | |
# # pi | |
# %%capture | |
# !pip install gradio | |
# !pip install huggingface_hub | |
# packages required for colab | |
!pip install gradio | |
!pip install transformers | |
!pip install torchaudio | |
!pip install fasttext | |
# fastText for language detection | |
!wget https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin | |
# imports required for colab | |
import gradio as gr | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline, EncoderDecoderCache | |
import torchaudio | |
import warnings | |
import fasttext | |
import pandas as pd | |
import csv | |
import os | |
# hides warnings with pysoundfile | |
warnings.filterwarnings("ignore", category=UserWarning, message="PySoundFile failed.*") | |
# load model 1 transcription | |
whisper_model_name = "openai/whisper-large" | |
processor = WhisperProcessor.from_pretrained(whisper_model_name) | |
whisper_model = WhisperForConditionalGeneration.from_pretrained(whisper_model_name) | |
# load model 2 translation | |
translation_model = pipeline("translation", model="Helsinki-NLP/opus-mt-ROMANCE-en") | |
# load additional model 3 language detection | |
lang_model = fasttext.load_model('lid.176.bin') # pre-trained model | |
# app usage history | |
history_data = [] | |
# save data csv | |
def saveData(text, language, translated_text, confidence_score): | |
# gd path | |
file_path = '/content/drive/MyDrive/IT164/a2prompt.csv' | |
# check if file exists, if not make new one with headers | |
file_exists = os.path.isfile(file_path) | |
# open csv file to append data | |
with open(file_path, 'a', newline='', encoding='utf-8') as f: | |
w = csv.writer(f) | |
if not file_exists: | |
# write header if file is created | |
w.writerow(['Text', 'Language', 'Translation', 'Confidence Score']) | |
# write new data row | |
w.writerow([text, language, translated_text, confidence_score]) | |
# load audio input and transcribe | |
def transcribe_audio(audio_file, sampling_rate=48000): # set to 48 kHz | |
# load audio file with torchaudio | |
waveform, sr = torchaudio.load(audio_file, normalize=True) | |
# max 16kHz (resample) | |
if sr != 16000: | |
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000) # resample to 16 kHz | |
waveform = transform(waveform) | |
sr = 16000 # update as 16 kHz | |
# whisperprocessor | |
inputs = processor(waveform.squeeze(0).numpy(), return_tensors="pt", sampling_rate=sr) | |
# generate transcription and handle "past_key_values deprecation" error | |
past_key_values = None | |
generated_ids = whisper_model.generate( | |
inputs["input_features"], | |
past_key_values=past_key_values | |
) | |
# encoderdecodercache (to handle past_key_values) | |
if past_key_values is not None: | |
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) | |
return processor.decode(generated_ids[0], skip_special_tokens=True) | |
# detect language using fastText | |
def detect_language(text): | |
result = lang_model.predict(text) # predict language with fasttext | |
language = result[0][0].replace('__label__', '') # extract the predicted language label | |
score = result[1][0] # confidence score | |
return language, score | |
# translate text (to english) | |
def translate_text_to_english(text, source_lang="fr"): | |
# translate detected language | |
translation = translation_model(text, src_lang=source_lang, tgt_lang="en") | |
return translation[0]['translation_text'] | |
# function to track history (save results to the list and save to csv) | |
def save_to_history(text, language, translation, confidence_score): | |
history_data.append([text, language, translation, confidence_score]) | |
# save csv | |
saveData(text, language, translation, confidence_score) | |
# process audio, transcribe, detect language, and translate | |
def process_audio(audio_file): | |
transcription = transcribe_audio(audio_file, sampling_rate=48000) # use 48 kHz initially (mac rate) | |
language, score = detect_language(transcription) # detect language of the transcription | |
translated_text = translate_text_to_english(transcription, source_lang=language) # translate | |
save_to_history(transcription, language, translated_text, score) # save results | |
return transcription, language, score, translated_text | |
# update visibility of the history table in gradio | |
def update_vis(radio_value): | |
if radio_value == 'show': | |
return gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=True) | |
else: | |
return gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=False) | |
# gradio interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = gr.Audio(label="Record your voice", type="filepath") # audio input | |
transcription_output = gr.Textbox(label="Transcription") # transcription output | |
language_output = gr.Textbox(label="Detected Language") # detected language output | |
score_output = gr.Textbox(label="Confidence Score") # confidence score output | |
translated_output = gr.Textbox(label="Translated Text to English") # translated text output | |
process_button = gr.Button("Process Audio") # button to process the audio | |
with gr.Column(): | |
history = gr.Radio(['show', 'hide'], label="App usage history") # "show" or "hide" (history) | |
dataframe = gr.DataFrame(pd.DataFrame(history_data, columns=["Text", "Language", "Translation", "Confidence Score"]), visible=False) | |
# button click (process audio and display output) | |
process_button.click(fn=process_audio, inputs=[audio_input], outputs=[transcription_output, language_output, score_output, translated_output]) | |
history.change(fn=update_vis, inputs=history, outputs=dataframe) | |
demo.launch(debug=True) |