Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
3 |
|
|
|
4 |
model_name = "google/flan-t5-xl"
|
5 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
6 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def generate_response(question):
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
23 |
outputs = model.generate(input_ids, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.95)
|
24 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
25 |
return response
|
26 |
|
27 |
iface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
import torch
|
5 |
+
from datasets import load_dataset
|
6 |
|
7 |
+
# Load the model and tokenizer
|
8 |
model_name = "google/flan-t5-xl"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
11 |
|
12 |
+
# Load the Gita dataset
|
13 |
+
ds = load_dataset("knowrohit07/gita_dataset")
|
14 |
+
chapters = ds['train']['Chapter']
|
15 |
+
sentence_ranges = ds['train']['sentence_range']
|
16 |
+
texts = ds['train']['Text']
|
17 |
+
|
18 |
+
# Load a sentence transformer model for semantic search
|
19 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
20 |
+
|
21 |
+
# Encode all texts for faster similarity search
|
22 |
+
text_embeddings = sentence_model.encode(texts, convert_to_tensor=True)
|
23 |
+
|
24 |
+
def find_relevant_texts(query, top_k=3):
|
25 |
+
query_embedding = sentence_model.encode(query, convert_to_tensor=True)
|
26 |
+
cos_scores = util.cos_sim(query_embedding, text_embeddings)[0]
|
27 |
+
top_results = torch.topk(cos_scores, k=top_k)
|
28 |
+
|
29 |
+
relevant_texts = []
|
30 |
+
for score, idx in zip(top_results[0], top_results[1]):
|
31 |
+
relevant_texts.append(f"Chapter {chapters[idx]}, Verses {sentence_ranges[idx]}: {texts[idx]}")
|
32 |
+
|
33 |
+
return "\n\n".join(relevant_texts)
|
34 |
|
35 |
def generate_response(question):
|
36 |
+
relevant_texts = find_relevant_texts(question)
|
37 |
+
|
38 |
+
prompt = f"""Based on the following excerpts from the Bhagavad Gita, answer the question.
|
39 |
+
|
40 |
+
Relevant excerpts:
|
41 |
+
{relevant_texts}
|
42 |
+
|
43 |
+
Question: {question}
|
44 |
+
|
45 |
+
Answer:"""
|
46 |
+
|
47 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
48 |
outputs = model.generate(input_ids, max_new_tokens=200, do_sample=True, temperature=0.7, top_p=0.95)
|
49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
|
51 |
return response
|
52 |
|
53 |
iface = gr.Interface(
|