Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .gitattributes +35 -35
- README.md +14 -12
- __pycache__/app.cpython-310.pyc +0 -0
- app.py +315 -0
- model_prices.json +0 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
---
|
2 |
-
title: Text
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Text-To-Dollars
|
3 |
+
emoji: 💰
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.43.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
short_description: Get the price for any API LLM call.
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/app.cpython-310.pyc
ADDED
Binary file (8.84 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
import tiktoken
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# Constants
|
9 |
+
USD_TO_INR = 84
|
10 |
+
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
11 |
+
|
12 |
+
# Fetch and process token costs
|
13 |
+
try:
|
14 |
+
response = requests.get(PRICES_URL)
|
15 |
+
if response.status_code == 200:
|
16 |
+
TOKEN_COSTS = response.json()
|
17 |
+
else:
|
18 |
+
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
|
19 |
+
except Exception as e:
|
20 |
+
print(f'Failed to update token costs with error: {e}. Using static costs.')
|
21 |
+
with open("model_prices.json", "r") as f:
|
22 |
+
TOKEN_COSTS = json.load(f)
|
23 |
+
|
24 |
+
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
|
25 |
+
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
|
26 |
+
TOKEN_COSTS = TOKEN_COSTS.loc[
|
27 |
+
(~TOKEN_COSTS["model"].str.contains("sample_spec"))
|
28 |
+
& (~TOKEN_COSTS["input_cost_per_token"].isnull())
|
29 |
+
& (~TOKEN_COSTS["output_cost_per_token"].isnull())
|
30 |
+
& (TOKEN_COSTS["input_cost_per_token"] > 0)
|
31 |
+
& (TOKEN_COSTS["output_cost_per_token"] > 0)
|
32 |
+
]
|
33 |
+
TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False)
|
34 |
+
|
35 |
+
# Convert USD costs to INR
|
36 |
+
TOKEN_COSTS["input_cost_per_token"] *= USD_TO_INR
|
37 |
+
TOKEN_COSTS["output_cost_per_token"] *= USD_TO_INR
|
38 |
+
|
39 |
+
def clean_names(s):
|
40 |
+
s = s.replace("_", " ").replace("ai", "AI")
|
41 |
+
return s[0].upper() + s[1:]
|
42 |
+
|
43 |
+
TOKEN_COSTS["litellm_provider"] = TOKEN_COSTS["litellm_provider"].apply(clean_names)
|
44 |
+
|
45 |
+
cmap = plt.get_cmap('RdYlGn_r') # Red-Yellow-Green colormap, reversed
|
46 |
+
|
47 |
+
def count_string_tokens(string: str, model: str) -> int:
|
48 |
+
try:
|
49 |
+
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
|
50 |
+
except:
|
51 |
+
if len(model.split('/')) > 1:
|
52 |
+
try:
|
53 |
+
encoding = tiktoken.encoding_for_model(model.split('/')[-2] + '/' + model.split('/')[-1])
|
54 |
+
except KeyError:
|
55 |
+
print(f"Model {model} not found. Using cl100k_base encoding.")
|
56 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
57 |
+
else:
|
58 |
+
print(f"Model {model} not found. Using cl100k_base encoding.")
|
59 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
60 |
+
return len(encoding.encode(string))
|
61 |
+
|
62 |
+
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
|
63 |
+
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
|
64 |
+
prompt_cost = prompt_tokens * model_data['input_cost_per_token']
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
completion_cost = completion_tokens * model_data['output_cost_per_token']
|
71 |
+
|
72 |
+
return prompt_cost, completion_cost
|
73 |
+
|
74 |
+
def update_model_list(function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens):
|
75 |
+
filtered_models = TOKEN_COSTS.loc[TOKEN_COSTS["max_input_tokens"] >= supports_max_input_tokens*1000]
|
76 |
+
|
77 |
+
if litellm_provider != "Any":
|
78 |
+
filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
|
79 |
+
|
80 |
+
if supports_vision:
|
81 |
+
filtered_models = filtered_models[filtered_models['supports_vision']]
|
82 |
+
|
83 |
+
list_models = filtered_models['model'].tolist()
|
84 |
+
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def compute_all(input_type, prompt_text, completion_text, prompt_tokens, completion_tokens, models):
|
91 |
+
results = []
|
92 |
+
temp=prompt_tokens
|
93 |
+
temp2=completion_tokens
|
94 |
+
for model in models:
|
95 |
+
if input_type == "Text Input":
|
96 |
+
prompt_tokens = count_string_tokens(prompt_text, model)
|
97 |
+
completion_tokens = count_string_tokens(completion_text, model)
|
98 |
+
else: # Token Count Input
|
99 |
+
|
100 |
+
|
101 |
+
prompt_tokens= int(prompt_tokens * 1000)
|
102 |
+
|
103 |
+
completion_tokens = int(completion_tokens * 1000)
|
104 |
+
|
105 |
+
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
|
106 |
+
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
|
107 |
+
|
108 |
+
total_cost = prompt_cost + completion_cost
|
109 |
+
|
110 |
+
results.append({
|
111 |
+
"Model": model,
|
112 |
+
"Provider": model_data['litellm_provider'],
|
113 |
+
"Input Cost / M tokens": model_data['input_cost_per_token']*1e6,
|
114 |
+
"Output Cost / M tokens": model_data['output_cost_per_token']*1e6,
|
115 |
+
"Total Cost": round(total_cost, 2),
|
116 |
+
})
|
117 |
+
prompt_tokens=temp
|
118 |
+
completion_tokens=temp2
|
119 |
+
|
120 |
+
|
121 |
+
df = pd.DataFrame(results)
|
122 |
+
|
123 |
+
if len(df) > 1:
|
124 |
+
norm = plt.Normalize(df['Total Cost'].min(), df['Total Cost'].max())
|
125 |
+
|
126 |
+
def get_color(val):
|
127 |
+
color = cmap(norm(val))
|
128 |
+
return f'rgba({int(color[0]*255)}, {int(color[1]*255)}, {int(color[2]*255)}, 0.3)'
|
129 |
+
|
130 |
+
else:
|
131 |
+
def get_color(val):
|
132 |
+
return "rgba(0, 0, 0, 0)"
|
133 |
+
|
134 |
+
# Create the HTML table with animations
|
135 |
+
html_table = '<table class="styled-table">'
|
136 |
+
html_table += '<thead><tr>'
|
137 |
+
for col in df.columns:
|
138 |
+
html_table += f'<th>{col}</th>'
|
139 |
+
html_table += '</tr></thead><tbody>'
|
140 |
+
|
141 |
+
for i, row in df.iterrows():
|
142 |
+
html_table += f'<tr class="animate-row" style="animation-delay: {i * 0.1}s;">'
|
143 |
+
for col in df.columns:
|
144 |
+
value = row[col]
|
145 |
+
if col == 'Total Cost':
|
146 |
+
color = get_color(value)
|
147 |
+
html_table += f'<td class="total-cost" style="background-color: {color};">₹{value:.2f}</td>'
|
148 |
+
elif col in ["Input Cost / M tokens", "Output Cost / M tokens"]:
|
149 |
+
html_table += f'<td>₹{value:.2f}</td>'
|
150 |
+
else:
|
151 |
+
html_table += f'<td>{value}</td>'
|
152 |
+
html_table += '</tr>'
|
153 |
+
|
154 |
+
html_table += '</tbody></table>'
|
155 |
+
|
156 |
+
return html_table
|
157 |
+
|
158 |
+
def toggle_input_visibility(choice):
|
159 |
+
return (
|
160 |
+
gr.Group(visible=(choice == "Text Input")),
|
161 |
+
gr.Group(visible=(choice == "Token Count Input"))
|
162 |
+
)
|
163 |
+
|
164 |
+
with gr.Blocks(css="""
|
165 |
+
.styled-table {
|
166 |
+
border-collapse: separate;
|
167 |
+
border-spacing: 0;
|
168 |
+
margin: 25px 0;
|
169 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
170 |
+
width: 100%;
|
171 |
+
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
|
172 |
+
border-radius: 12px;
|
173 |
+
overflow: hidden;
|
174 |
+
background-color: #f8f9fa;
|
175 |
+
}
|
176 |
+
.styled-table thead tr {
|
177 |
+
background-color: #3a506b;
|
178 |
+
color: #ffffff;
|
179 |
+
text-align: left;
|
180 |
+
font-weight: bold;
|
181 |
+
}
|
182 |
+
.styled-table th,
|
183 |
+
.styled-table td {
|
184 |
+
padding: 14px 18px;
|
185 |
+
border-bottom: 1px solid #e0e0e0;
|
186 |
+
}
|
187 |
+
.styled-table tbody tr {
|
188 |
+
transition: all 0.3s ease;
|
189 |
+
}
|
190 |
+
.styled-table tbody tr:nth-of-type(even) {
|
191 |
+
background-color: #f0f4f8;
|
192 |
+
}
|
193 |
+
.styled-table tbody tr:last-of-type {
|
194 |
+
border-bottom: 2px solid #3a506b;
|
195 |
+
}
|
196 |
+
.styled-table tbody tr:hover {
|
197 |
+
background-color: #e3e8ef;
|
198 |
+
transform: scale(1.02);
|
199 |
+
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
|
200 |
+
}
|
201 |
+
.total-cost {
|
202 |
+
font-weight: bold;
|
203 |
+
transition: all 0.3s ease;
|
204 |
+
color: #2c3e50;
|
205 |
+
}
|
206 |
+
.total-cost:hover {
|
207 |
+
transform: scale(1.1);
|
208 |
+
color: #e74c3c;
|
209 |
+
}
|
210 |
+
@keyframes fadeIn {
|
211 |
+
from { opacity: 0; transform: translateY(20px); }
|
212 |
+
to { opacity: 1; transform: translateY(0); }
|
213 |
+
}
|
214 |
+
.animate-row {
|
215 |
+
animation: fadeIn 0.5s ease-out forwards;
|
216 |
+
opacity: 0;
|
217 |
+
}
|
218 |
+
.styled-table tbody tr td {
|
219 |
+
color: #34495e;
|
220 |
+
}
|
221 |
+
.styled-table tbody tr:hover td {
|
222 |
+
color: #2c3e50;
|
223 |
+
}
|
224 |
+
""", theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.slate)) as demo:
|
225 |
+
gr.Markdown("""
|
226 |
+
# 💰 Text-to-Rupees: Get the price of your LLM API calls in INR! 💰
|
227 |
+
Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
|
228 |
+
Prices converted to INR (1 USD = 84 INR).
|
229 |
+
""")
|
230 |
+
|
231 |
+
with gr.Row():
|
232 |
+
with gr.Column():
|
233 |
+
gr.Markdown("## Input type:")
|
234 |
+
input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
|
235 |
+
|
236 |
+
with gr.Group() as text_input_group:
|
237 |
+
prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3)
|
238 |
+
completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
|
239 |
+
|
240 |
+
with gr.Group(visible=False) as token_input_group:
|
241 |
+
prompt_tokens_input = gr.Number(label="Prompt Tokens (thousands)", value=1.5)
|
242 |
+
completion_tokens_input = gr.Number(label="Completion Tokens (thousands)", value=2)
|
243 |
+
|
244 |
+
with gr.Column():
|
245 |
+
gr.Markdown("## Model choice:")
|
246 |
+
with gr.Row():
|
247 |
+
with gr.Column():
|
248 |
+
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
|
249 |
+
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
|
250 |
+
with gr.Column():
|
251 |
+
supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands)", minimum=2, maximum=256, step=2, value=2)
|
252 |
+
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.084, step=0.00084, value=0.084, visible=False, interactive=False)
|
253 |
+
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
|
254 |
+
|
255 |
+
model = gr.Dropdown(label="Models (at least 1)", choices=TOKEN_COSTS['model'].tolist(), value=["anyscale/meta-llama/Meta-Llama-3-8B-Instruct", "gpt-4o", "claude-3-sonnet-20240229"], multiselect=True)
|
256 |
+
|
257 |
+
gr.Markdown("## Resulting Costs 👇")
|
258 |
+
|
259 |
+
with gr.Row():
|
260 |
+
results_table = gr.HTML()
|
261 |
+
|
262 |
+
input_type.change(
|
263 |
+
toggle_input_visibility,
|
264 |
+
inputs=[input_type],
|
265 |
+
outputs=[text_input_group, token_input_group]
|
266 |
+
)
|
267 |
+
|
268 |
+
gr.on(
|
269 |
+
triggers=[function_calling.change, litellm_provider.change, max_price.change, supports_vision.change, supports_max_input_tokens.change],
|
270 |
+
fn=update_model_list,
|
271 |
+
inputs=[function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens],
|
272 |
+
outputs=model,
|
273 |
+
)
|
274 |
+
|
275 |
+
gr.on(
|
276 |
+
triggers=[
|
277 |
+
input_type.change,
|
278 |
+
prompt_text.change,
|
279 |
+
completion_text.change,
|
280 |
+
prompt_tokens_input.change,
|
281 |
+
completion_tokens_input.change,
|
282 |
+
function_calling.change,
|
283 |
+
litellm_provider.change,
|
284 |
+
supports_vision.change,
|
285 |
+
supports_max_input_tokens.change,
|
286 |
+
model.change
|
287 |
+
],
|
288 |
+
fn=compute_all,
|
289 |
+
inputs=[
|
290 |
+
input_type,
|
291 |
+
prompt_text,
|
292 |
+
completion_text,
|
293 |
+
prompt_tokens_input,
|
294 |
+
completion_tokens_input,
|
295 |
+
model
|
296 |
+
],
|
297 |
+
outputs=results_table
|
298 |
+
)
|
299 |
+
|
300 |
+
# Load results on page load
|
301 |
+
demo.load(
|
302 |
+
fn=compute_all,
|
303 |
+
inputs=[
|
304 |
+
input_type,
|
305 |
+
prompt_text,
|
306 |
+
completion_text,
|
307 |
+
prompt_tokens_input,
|
308 |
+
completion_tokens_input,
|
309 |
+
model
|
310 |
+
],
|
311 |
+
outputs=results_table
|
312 |
+
)
|
313 |
+
|
314 |
+
if __name__ == "__main__":
|
315 |
+
demo.launch()
|
model_prices.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
tiktoken
|
3 |
+
matplotlib
|