flux2api / app.py
aithink's picture
Upload app.py
fa87d24 verified
from flask import Flask, request, jsonify, Response, stream_with_context
import requests
import json
import time
import random
import logging
import sys
import re
from logging.handlers import TimedRotatingFileHandler
app = Flask(__name__)
# 配置日志
class RequestFormatter(logging.Formatter):
def format(self, record):
if request.method in ['POST', 'GET']: # 记录 POST 和 GET 请求
record.url = request.url
record.remote_addr = request.remote_addr
record.token = request.headers.get('Authorization', 'No Token')
return super().format(record)
return None
formatter = RequestFormatter(
'%(remote_addr)s - - [%(asctime)s] - Token: %(token)s - %(message)s',
datefmt='%d/%b/%Y %H:%M:%S'
)
handler = TimedRotatingFileHandler('app.log', when="midnight", interval=1, backupCount=30)
handler.setFormatter(formatter)
handler.setLevel(logging.INFO)
app.logger.addHandler(handler)
app.logger.setLevel(logging.INFO)
# 模型映射
MODEL_MAPPING = {
"flux.1-schnell": {
"provider": "black-forest-labs",
"mapping": "Pro/black-forest-labs/FLUX.1-schnell"
},
"flux.1-dev": {
"provider": "black-forest-labs",
"mapping": "black-forest-labs/FLUX.1-dev"
},
"stable-diffusion-3-5-large": {
"provider": "stabilityai",
"mapping": "stabilityai/stable-diffusion-3-5-large"
},
"stable-diffusion-2-1": {
"provider": "stabilityai",
"mapping": "stabilityai/stable-diffusion-2-1"
},
"stable-diffusion-3-medium": {
"provider": "stabilityai",
"mapping": "stabilityai/stable-diffusion-3-medium"
},
"stable-diffusion-xl-base-1.0": {
"provider": "stabilityai",
"mapping": "stabilityai/stable-diffusion-xl-base-1.0"
}
}
# 模拟身份验证函数
def getAuthCookie(req):
auth_cookie = req.headers.get('Authorization')
if auth_cookie and auth_cookie.startswith('Bearer '):
return auth_cookie
return None
@app.route('/')
def index():
usage = """
<html>
<head>
<title>Text-to-Image API with SiliconFlow</title>
<style>
body { font-family: Arial, sans-serif; line-height: 1.6; padding: 20px; max-width: 800px; margin: 0 auto; }
h1 { color: #333; }
h2 { color: #666; }
pre { background-color: #f4f4f4; padding: 10px; border-radius: 5px; }
code { font-family: Consolas, monospace; }
</style>
</head>
<body>
<h1>Welcome to the Text-to-Image API with SiliconFlow!</h1>
<h2>Usage:</h2>
<ol>
<li>Send a POST request to <code>/ai/v1/chat/completions</code></li>
<li>Include your prompt in the 'content' field of the last message</li>
<li>Optional parameters:
<ul>
<li><code>-s &lt;ratio&gt;</code>: Set image size ratio (e.g., -s 1:1, -s 16:9)</li>
<li><code>-o</code>: Use original prompt without enhancement</li>
</ul>
</li>
</ol>
<h2>Example Request:</h2>
<pre><code>
{
"model": "flux",
"messages": [
{
"role": "user",
"content": "A beautiful landscape -s 16:9"
}
]
}
</code></pre>
<p>For more details, please refer to the API documentation.</p>
</body>
</html>
"""
return usage, 200
@app.route('/ai/v1/models', methods=['GET'])
def get_models():
try:
# 验证身份
auth_cookie = getAuthCookie(request)
if not auth_cookie:
app.logger.info(f'GET /ai/v1/models - 401 Unauthorized')
return jsonify({"error": "Unauthorized"}), 401
# 返回模型列表
models_list = [
{
"id": model_id,
"object": "model",
"created": int(time.time()),
"owned_by": info["provider"],
"permission": [],
"root": model_id,
"parent": None
}
for model_id, info in MODEL_MAPPING.items()
]
# 记录日志
app.logger.info(f'GET /ai/v1/models - 200 OK')
return jsonify({
"object": "list",
"data": models_list
})
except Exception as error:
app.logger.error(f"Error: {str(error)}")
return jsonify({"error": "Authentication failed", "details": str(error)}), 401
@app.route('/ai/v1/chat/completions', methods=['POST'])
def handle_request():
try:
body = request.json
model = body.get('model')
messages = body.get('messages')
stream = body.get('stream', False)
if not model or not messages or len(messages) == 0:
app.logger.info(f"POST /ai/v1/chat/completions - Status: 400 - Bad Request - Missing required fields")
return jsonify({"error": "Bad Request: Missing required fields"}), 400
# 映射 model
if model in MODEL_MAPPING:
mapped_model = MODEL_MAPPING[model]['mapping']
else:
app.logger.info(f"POST /ai/v1/chat/completions - Status: 400 - Bad Request - Model '{model}' not found")
return jsonify({"error": f"Model '{model}' not found"}), 400
prompt = messages[-1]['content']
image_size, clean_prompt, use_original, size_param = extract_params_from_prompt(prompt)
auth_header = request.headers.get('Authorization')
random_token = get_random_token(auth_header)
if not random_token:
app.logger.info(f"POST /ai/v1/chat/completions - Status: 401 - Unauthorized - Invalid or missing Authorization header")
return jsonify({"error": "Unauthorized: Invalid or missing Authorization header"}), 401
if use_original:
enhanced_prompt = clean_prompt
else:
enhanced_prompt = translate_and_enhance_prompt(clean_prompt, random_token)
new_url = 'https://api.siliconflow.cn/v1/images/generations'
new_request_body = {
"model": mapped_model, # 使用映射后的模型名称
"prompt": enhanced_prompt,
"negative_prompt": "", # 如果不需要负提示词,可以留空
"image_size": image_size,
"batch_size": 1,
"seed": random.randint(0, 4999999999), # 随机生成一个种子值
"num_inference_steps": 20,
"guidance_scale": 7.5
}
headers = {
'Authorization': f'Bearer {random_token}',
'Content-Type': 'application/json'
}
response = requests.post(new_url, headers=headers, json=new_request_body, timeout=60)
response.raise_for_status()
response_body = response.json()
if 'data' in response_body and response_body['data'] and 'url' in response_body['data'][0]:
image_url = response_body['data'][0]['url']
else:
raise ValueError("Unexpected response structure from image generation API")
unique_id = str(int(time.time() * 1000))
current_timestamp = int(time.time())
system_fingerprint = "fp_" + ''.join(random.choices('abcdefghijklmnopqrstuvwxyz0123456789', k=9))
image_data = {'data': [{'url': image_url}]}
# Log the key information
params = []
if size_param != "16:9":
params.append(f"-s {size_param}")
if use_original:
params.append("-o")
params_str = " ".join(params) if params else "no params"
app.logger.info(f'POST /ai/v1/chat/completions - Status: 200 - Token: {random_token} - Model: {mapped_model} - Params: {params_str} - Image URL: {image_url}')
if stream:
return stream_response(unique_id, image_data, clean_prompt, enhanced_prompt, image_size, current_timestamp, model, system_fingerprint, use_original)
else:
return non_stream_response(unique_id, image_data, clean_prompt, enhanced_prompt, image_size, current_timestamp, model, system_fingerprint, use_original)
except Exception as e:
app.logger.error(f"Error: {str(e)}")
return jsonify({"error": f"Internal Server Error: {str(e)}"}), 500
def extract_params_from_prompt(prompt):
size_match = re.search(r'-s\s+(\S+)', prompt)
original_match = re.search(r'-o', prompt)
if size_match:
size = size_match.group(1)
clean_prompt = re.sub(r'-s\s+\S+', '', prompt).strip()
else:
size = "16:9"
clean_prompt = prompt
use_original = bool(original_match)
if use_original:
clean_prompt = re.sub(r'-o', '', clean_prompt).strip()
image_size = RATIO_MAP.get(size, RATIO_MAP["16:9"])
return image_size, clean_prompt, use_original, size
def get_random_token(auth_header):
if not auth_header:
return None
if auth_header.startswith('Bearer '):
auth_header = auth_header[7:]
tokens = [token.strip() for token in auth_header.split(',') if token.strip()]
if not tokens:
return None
return random.choice(tokens)
def translate_and_enhance_prompt(prompt, auth_token):
translate_url = 'https://api.siliconflow.cn/v1/chat/completions'
translate_body = {
'model': 'Qwen/Qwen2-72B-Instruct',
'messages': [
{'role': 'system', 'content': SYSTEM_ASSISTANT},
{'role': 'user', 'content': prompt}
]
}
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {auth_token}'
}
response = requests.post(translate_url, headers=headers, json=translate_body, timeout=30)
response.raise_for_status()
result = response.json()
return result['choices'][0]['message']['content']
SYSTEM_ASSISTANT = """作为 Stable Diffusion Prompt 提示词专家,您将从关键词中创建提示,通常来自 Danbooru 等数据库。
提示通常描述图像,使用常见词汇,按重要性排列,并用逗号分隔。避免使用"-"或".",但可以接受空格和自然语言。避免词汇重复。
为了强调关键词,请将其放在括号中以增加其权重。例如,"(flowers)"将'flowers'的权重增加1.1倍,而"(((flowers)))"将其增加1.331倍。使用"(flowers:1.5)"将'flowers'的权重增加1.5倍。只为重要的标签增加权重。
提示包括三个部分:**前缀**(质量标签+风格词+效果器)+ **主题**(图像的主要焦点)+ **场景**(背景、环境)。
* 前缀影响图像质量。像"masterpiece"、"best quality"、"4k"这样的标签可以提高图像的细节。像"illustration"、"lensflare"这样的风格词定义图像的风格。像"bestlighting"、"lensflare"、"depthoffield"这样的效果器会影响光照和深度。
* 主题是图像的主要焦点,如角色或场景。对主题进行详细描述可以确保图像丰富而详细。增加主题的权重以增强其清晰度。对于角色,描述面部、头发、身体、服装、姿势等特征。
* 场景描述环境。没有场景,图像的背景是平淡的,主题显得过大。某些主题本身包含场景(例如建筑物、风景)。像"花草草地"、"阳光"、"河流"这样的环境词可以丰富场景。你的任务是设计图像生成的提示。请按照以下步骤进行操作:
1. 我会发送给您一个图像场景。需要你生成详细的图像描述
2. 图像描述必须是英文,输出为Positive Prompt。
示例:
我发送:二战时期的护士。
您回复只回复:
A WWII-era nurse in a German uniform, holding a wine bottle and stethoscope, sitting at a table in white attire, with a table in the background, masterpiece, best quality, 4k, illustration style, best lighting, depth of field, detailed character, detailed environment.
"""
RATIO_MAP = {
"1:1": "1024x1024",
"1:2": "1024x2048",
"3:2": "1536x1024",
"4:3": "1536x2048",
"16:9": "2048x1152",
"9:16": "1152x2048"
}
def stream_response(unique_id, image_data, original_prompt, translated_prompt, size, created, model, system_fingerprint, use_original):
return Response(stream_with_context(generate_stream(unique_id, image_data, original_prompt, translated_prompt, size, created, model, system_fingerprint, use_original)), content_type='text/event-stream')
def generate_stream(unique_id, image_data, original_prompt, translated_prompt, size, created, model, system_fingerprint, use_original):
chunks = [
f"原始提示词:\n{original_prompt}\n",
]
if not use_original:
chunks.append(f"翻译后的提示词:\n{translated_prompt}\n")
chunks.extend([
f"图像规格:{size}\n",
"正在根据提示词生成图像...\n",
"图像正在处理中...\n",
"即将完成...\n",
f"生成成功!\n图像生成完毕,以下是结果:\n\n![生成的图像]({image_data['data'][0]['url']})"
])
for i, chunk in enumerate(chunks):
json_chunk = json.dumps({
"id": unique_id,
"object": "chat.completion.chunk",
"created": created,
"model": model,
"system_fingerprint": system_fingerprint,
"choices": [{
"index": 0,
"delta": {"content": chunk},
"logprobs": None,
"finish_reason": None
}]
})
yield f"data: {json_chunk}\n\n"
time.sleep(0.5) # 模拟生成时间
final_chunk = json.dumps({
"id": unique_id,
"object": "chat.completion.chunk",
"created": created,
"model": model,
"system_fingerprint": system_fingerprint,
"choices": [{
"index": 0,
"delta": {},
"logprobs": None,
"finish_reason": "stop"
}]
})
yield f"data: {final_chunk}\n\n"
def non_stream_response(unique_id, image_data, original_prompt, translated_prompt, size, created, model, system_fingerprint, use_original):
content = f"原始提示词:{original_prompt}\n"
if not use_original:
content += f"翻译后的提示词:{translated_prompt}\n"
content += (
f"图像规格:{size}\n"
f"图像生成成功!\n"
f"以下是结果:\n\n"
f"![生成的图像]({image_data['data'][0]['url']})"
)
response = {
'id': unique_id,
'object': "chat.completion",
'created': created,
'model': model,
'system_fingerprint': system_fingerprint,
'choices': [{
'index': 0,
'message': {
'role': "assistant",
'content': content
},
'finish_reason': "stop"
}],
'usage': {
'prompt_tokens': len(original_prompt),
'completion_tokens': len(content),
'total_tokens': len(original_prompt) + len(content)
}
}
return jsonify(response)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8000)