import gradio as gr import spaces import torch from diffusers import AutoencoderKL, TCDScheduler from diffusers.models.model_loading_utils import load_state_dict from gradio_imageslider import ImageSlider from huggingface_hub import hf_hub_download from transformers import pipeline from controlnet_union import ControlNetModel_Union from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline MODELS = { "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", } # 번역 모델 로드 translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") config_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="config_promax.json", ) config = ControlNetModel_Union.load_config(config_file) controlnet_model = ControlNetModel_Union.from_config(config) model_file = hf_hub_download( "xinsir/controlnet-union-sdxl-1.0", filename="diffusion_pytorch_model_promax.safetensors", ) state_dict = load_state_dict(model_file) model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" ) model.to(device="cuda", dtype=torch.float16) vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 ).to("cuda") pipe = StableDiffusionXLFillPipeline.from_pretrained( "SG161222/RealVisXL_V5.0_Lightning", torch_dtype=torch.float16, vae=vae, controlnet=model, variant="fp16", ).to("cuda") pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) def translate_if_korean(text): # 입력된 텍스트가 한글을 포함하고 있는지 확인 if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in text): # 한글이 포함되어 있다면 번역 translated = translator(text)[0]['translation_text'] print(f"Translated prompt: {translated}") # 디버깅을 위한 출력 return translated return text @spaces.GPU def fill_image(prompt, image, model_selection): # 프롬프트 번역 translated_prompt = translate_if_korean(prompt) ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipe.encode_prompt(translated_prompt, "cuda", True) source = image["background"] mask = image["layers"][0] alpha_channel = mask.split()[3] binary_mask = alpha_channel.point(lambda p: p > 0 and 255) cnet_image = source.copy() cnet_image.paste(0, (0, 0), binary_mask) for image in pipe( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, image=cnet_image, ): yield image, cnet_image image = image.convert("RGBA") cnet_image.paste(image, (0, 0), binary_mask) yield source, cnet_image def clear_result(): return gr.update(value=None) css = """ footer { visibility: hidden; } .sample-image { display: flex; justify-content: center; margin-top: 20px; } """ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo: with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="프롬프트", info="마스크에 채워넣을 내용을 설명하세요 (한글 또는 영어)", lines=3, ) with gr.Column(): model_selection = gr.Dropdown( choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="모델", ) run_button = gr.Button("생성") with gr.Row(): input_image = gr.ImageMask( type="pil", label="입력 이미지", crop_size=(1024, 1024), layers=False ) result = ImageSlider( interactive=False, label="생성된 이미지", ) use_as_input_button = gr.Button("입력 이미지로 사용", visible=False) # 샘플 이미지 추가 with gr.Row(elem_classes="sample-image"): sample_image = gr.Image("sample.png", label="샘플 이미지", height=256, width=256) def use_output_as_input(output_image): return gr.update(value=output_image[1]) use_as_input_button.click( fn=use_output_as_input, inputs=[result], outputs=[input_image] ) run_button.click( fn=clear_result, inputs=None, outputs=result, ).then( fn=lambda: gr.update(visible=False), inputs=None, outputs=use_as_input_button, ).then( fn=fill_image, inputs=[prompt, input_image, model_selection], outputs=result, ).then( fn=lambda: gr.update(visible=True), inputs=None, outputs=use_as_input_button, ) prompt.submit( fn=clear_result, inputs=None, outputs=result, ).then( fn=lambda: gr.update(visible=False), inputs=None, outputs=use_as_input_button, ).then( fn=fill_image, inputs=[prompt, input_image, model_selection], outputs=result, ).then( fn=lambda: gr.update(visible=True), inputs=None, outputs=use_as_input_button, ) demo.launch(share=False)