|
import gradio as gr |
|
import json |
|
import logging |
|
import torch |
|
from PIL import Image |
|
import spaces |
|
from diffusers import DiffusionPipeline |
|
import copy |
|
|
|
|
|
with open('loras.json', 'r') as f: |
|
loras = json.load(f) |
|
|
|
|
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) |
|
original_load_lora = copy.deepcopy(pipe.load_lora_into_transformer) |
|
pipe.to("cuda") |
|
|
|
def load_lora_into_transformer_patched(cls, state_dict, transformer, adapter_name=None, alpha=None, _pipeline=None): |
|
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict |
|
|
|
keys = list(state_dict.keys()) |
|
|
|
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)] |
|
state_dict = { |
|
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys |
|
} |
|
|
|
if len(state_dict.keys()) > 0: |
|
|
|
first_key = next(iter(state_dict.keys())) |
|
if "lora_A" not in first_key: |
|
state_dict = convert_unet_state_dict_to_peft(state_dict) |
|
|
|
if adapter_name in getattr(transformer, "peft_config", {}): |
|
raise ValueError( |
|
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name." |
|
) |
|
|
|
rank = {} |
|
for key, val in state_dict.items(): |
|
if "lora_B" in key: |
|
rank[key] = val.shape[1] |
|
|
|
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict) |
|
if "use_dora" in lora_config_kwargs: |
|
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"): |
|
raise ValueError( |
|
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." |
|
) |
|
else: |
|
lora_config_kwargs.pop("use_dora") |
|
|
|
|
|
lora_config_kwargs["lora_alpha"] = 32 |
|
lora_config = LoraConfig(**lora_config_kwargs) |
|
|
|
|
|
if adapter_name is None: |
|
adapter_name = get_adapter_name(transformer) |
|
|
|
|
|
|
|
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline) |
|
|
|
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name) |
|
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name) |
|
|
|
if incompatible_keys is not None: |
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
if unexpected_keys: |
|
logger.warning( |
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
f" {unexpected_keys}. " |
|
) |
|
|
|
|
|
if is_model_cpu_offload: |
|
_pipeline.enable_model_cpu_offload() |
|
elif is_sequential_cpu_offload: |
|
_pipeline.enable_sequential_cpu_offload() |
|
|
|
|
|
def update_selection(evt: gr.SelectData): |
|
selected_lora = loras[evt.index] |
|
new_placeholder = f"Type a prompt for {selected_lora['title']}" |
|
lora_repo = selected_lora["repo"] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co./{lora_repo}) ✨" |
|
return ( |
|
gr.update(placeholder=new_placeholder), |
|
updated_text, |
|
evt.index |
|
) |
|
|
|
@spaces.GPU(duration=90) |
|
def run_lora(prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): |
|
if selected_index is None: |
|
raise gr.Error("You must select a LoRA before proceeding.") |
|
|
|
selected_lora = loras[selected_index] |
|
lora_path = selected_lora["repo"] |
|
trigger_word = selected_lora["trigger_word"] |
|
|
|
|
|
if "weights" in selected_lora: |
|
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) |
|
else: |
|
pipe.load_lora_weights(lora_path) |
|
|
|
if "custom_alpha" in selected_lora: |
|
pipe.load_lora_into_transformer = load_lora_into_transformer_patched |
|
else: |
|
pipe.load_lora_into_transformer = original_load_lora |
|
|
|
|
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
|
|
|
|
image = pipe( |
|
prompt=f"{prompt} {trigger_word}", |
|
|
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
|
|
).images[0] |
|
|
|
|
|
pipe.unload_lora_weights() |
|
|
|
return image |
|
|
|
''' |
|
#gen_btn{height: 100%} |
|
''' |
|
with gr.Blocks(theme=gr.themes.Soft()) as app: |
|
gr.Markdown("# FLUX.1 LoRA the Explorer") |
|
selected_index = gr.State(None) |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA") |
|
with gr.Column(scale=1): |
|
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
selected_info = gr.Markdown("") |
|
gallery = gr.Gallery( |
|
[(item["image"], item["title"]) for item in loras], |
|
label="LoRA Gallery", |
|
allow_preview=False, |
|
columns=2 |
|
) |
|
|
|
with gr.Column(scale=3): |
|
result = gr.Image(label="Generated Image") |
|
|
|
with gr.Row(): |
|
|
|
|
|
|
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) |
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) |
|
|
|
with gr.Row(): |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True) |
|
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1) |
|
|
|
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index]) |
|
|
|
gr.on( |
|
triggers=[generate_button.click, prompt.submit], |
|
fn=run_lora, |
|
inputs=[prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale], |
|
outputs=[result] |
|
) |
|
|
|
app.queue() |
|
app.launch() |