sd35lora / app.py
multimodalart's picture
Update app.py
07d3eff verified
raw
history blame
7.34 kB
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline
import copy
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
original_load_lora = copy.deepcopy(pipe.load_lora_into_transformer)
pipe.to("cuda")
def load_lora_into_transformer_patched(cls, state_dict, transformer, adapter_name=None, alpha=None, _pipeline=None):
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
keys = list(state_dict.keys())
transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
state_dict = {
k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
}
if len(state_dict.keys()) > 0:
# check with first key if is not in peft format
first_key = next(iter(state_dict.keys()))
if "lora_A" not in first_key:
state_dict = convert_unet_state_dict_to_peft(state_dict)
if adapter_name in getattr(transformer, "peft_config", {}):
raise ValueError(
f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
)
rank = {}
for key, val in state_dict.items():
if "lora_B" in key:
rank[key] = val.shape[1]
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=None, peft_state_dict=state_dict)
if "use_dora" in lora_config_kwargs:
if lora_config_kwargs["use_dora"] and is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
else:
lora_config_kwargs.pop("use_dora")
lora_config_kwargs["lora_alpha"] = 32
lora_config = LoraConfig(**lora_config_kwargs)
# adapter_name
if adapter_name is None:
adapter_name = get_adapter_name(transformer)
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
# otherwise loading LoRA weights will lead to an error
is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)
if incompatible_keys is not None:
# check only for unexpected keys
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
logger.warning(
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
f" {unexpected_keys}. "
)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co./{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index
)
@spaces.GPU(duration=90)
def run_lora(prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Load LoRA weights
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
if "custom_alpha" in selected_lora:
pipe.load_lora_into_transformer = load_lora_into_transformer_patched
else:
pipe.load_lora_into_transformer = original_load_lora
# Set random seed for reproducibility
generator = torch.Generator(device="cuda").manual_seed(seed)
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
#negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
#cross_attention_kwargs={"scale": lora_scale},
).images[0]
# Unload LoRA weights
pipe.unload_lora_weights()
return image
'''
#gen_btn{height: 100%}
'''
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# FLUX.1 LoRA the Explorer")
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=2):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=2
)
with gr.Column(scale=3):
result = gr.Image(label="Generated Image")
with gr.Row():
#with gr.Column():
#prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
#negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=1)
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, seed, width, height, lora_scale],
outputs=[result]
)
app.queue()
app.launch()