robertselvam commited on
Commit
40488ca
1 Parent(s): fadc3b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -19
app.py CHANGED
@@ -130,13 +130,7 @@ class ChatDocumentQA:
130
  file_path = file_paths[0].name
131
  file_extension = os.path.splitext(file_path)[1]
132
 
133
- if file_extension == '.pdf':
134
- pdf_docs = [file_path.name for file_path in file_paths]
135
- raw_text = self._extract_text_from_pdfs(pdf_docs)
136
- text_chunks = self._split_text_into_chunks(raw_text)
137
- vectorstore = self._create_vector_store_from_text_chunks(text_chunks)
138
- return "file uploaded", {"knowledge_base": vectorstore}
139
- elif file_extension == '.csv':
140
  # agent = self.create_agent(file_path)
141
  # tools = self.get_agent_tools(agent)
142
  # memory,tools,prompt = self.create_memory_for_csv_qa(tools)
@@ -150,7 +144,12 @@ class ChatDocumentQA:
150
  return "file uploaded", {"knowledge_base": agent_chain}
151
 
152
  else:
153
- return "file uploaded", ""
 
 
 
 
 
154
 
155
  def _get_urls_knowledge_base(self, urls: str) -> Tuple[str, Dict[str, FAISS]]:
156
  """Build knowledge base from URLs.
@@ -232,24 +231,15 @@ class ChatDocumentQA:
232
  file_path = file_paths[0].name
233
  file_extension = os.path.splitext(file_path)[1]
234
 
235
- if file_extension == ".pdf":
236
- vectorstore = state["knowledge_base"]
237
- chat = self._create_conversation_chain(vectorstore)
238
- # user_ques = {"question": message}
239
- print("chat_history",chat_history)
240
- response = chat({"question": message,"chat_history": chat_history})
241
- chat_history.append((message, response["answer"]))
242
- return "", chat_history
243
-
244
- elif file_extension == '.csv':
245
  agent_chain = state["knowledge_base"]
246
  response = agent_chain.run(input = message)
247
  chat_history.append((message, response))
248
  return "", chat_history
 
249
  else:
250
  vectorstore = state["knowledge_base"]
251
  chat = self._create_conversation_chain(vectorstore)
252
- # user_ques = {"question": message}
253
  print("chat_history",chat_history)
254
  response = chat({"question": message,"chat_history": chat_history})
255
  chat_history.append((message, response["answer"]))
 
130
  file_path = file_paths[0].name
131
  file_extension = os.path.splitext(file_path)[1]
132
 
133
+ if file_extension == '.csv':
 
 
 
 
 
 
134
  # agent = self.create_agent(file_path)
135
  # tools = self.get_agent_tools(agent)
136
  # memory,tools,prompt = self.create_memory_for_csv_qa(tools)
 
144
  return "file uploaded", {"knowledge_base": agent_chain}
145
 
146
  else:
147
+ pdf_docs = [file_path.name for file_path in file_paths]
148
+ raw_text = self._extract_text_from_pdfs(pdf_docs)
149
+ text_chunks = self._split_text_into_chunks(raw_text)
150
+ vectorstore = self._create_vector_store_from_text_chunks(text_chunks)
151
+ return "file uploaded", {"knowledge_base": vectorstore}
152
+
153
 
154
  def _get_urls_knowledge_base(self, urls: str) -> Tuple[str, Dict[str, FAISS]]:
155
  """Build knowledge base from URLs.
 
231
  file_path = file_paths[0].name
232
  file_extension = os.path.splitext(file_path)[1]
233
 
234
+ if file_extension == '.csv':
 
 
 
 
 
 
 
 
 
235
  agent_chain = state["knowledge_base"]
236
  response = agent_chain.run(input = message)
237
  chat_history.append((message, response))
238
  return "", chat_history
239
+
240
  else:
241
  vectorstore = state["knowledge_base"]
242
  chat = self._create_conversation_chain(vectorstore)
 
243
  print("chat_history",chat_history)
244
  response = chat({"question": message,"chat_history": chat_history})
245
  chat_history.append((message, response["answer"]))