File size: 12,098 Bytes
e317e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aab0441
f8a3bb0
 
9457e26
aab0441
e317e6a
0ba90e2
 
 
95ce447
0ba90e2
 
95ce447
 
0ba90e2
 
95ce447
 
0ba90e2
 
95ce447
0ba90e2
95ce447
0ba90e2
 
 
 
 
95ce447
0ba90e2
 
95ce447
0ba90e2
 
95ce447
0ba90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ce447
0ba90e2
 
95ce447
0ba90e2
 
95ce447
 
0ba90e2
 
95ce447
0ba90e2
95ce447
54f3b3b
95ce447
0ba90e2
95ce447
0ba90e2
 
 
95ce447
0ba90e2
 
95ce447
0ba90e2
 
 
 
95ce447
0ba90e2
95ce447
 
0ba90e2
95ce447
0ba90e2
95ce447
0ba90e2
 
 
 
95ce447
0ba90e2
95ce447
54f3b3b
 
95ce447
0ba90e2
 
 
95ce447
0ba90e2
 
95ce447
0ba90e2
 
95ce447
0ba90e2
 
 
 
 
 
 
 
 
 
 
 
 
e76b8cd
 
 
 
 
 
 
 
 
 
0ba90e2
 
 
 
 
 
 
95ce447
 
0ba90e2
 
95ce447
0ba90e2
95ce447
0ba90e2
 
 
 
 
 
 
 
0db2a92
 
 
 
 
 
 
 
0ba90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95ce447
0ba90e2
95ce447
0ba90e2
 
 
 
 
 
95ce447
 
0ba90e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7757f1c
bd573cb
 
 
 
 
0ba90e2
 
 
 
 
 
 
 
 
 
 
 
 
3649991
0ba90e2
95ce447
0ba90e2
 
 
 
 
 
 
 
bbe15ac
0ba90e2
0332fe4
0ba90e2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import UnstructuredFileLoader
from typing import List, Dict, Tuple
import gradio as gr
import validators
import requests
import mimetypes
import tempfile
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.prompts.prompt import PromptTemplate
import pandas as pd
from langchain_experimental.agents.agent_toolkits.csv.base import create_csv_agent
# from langchain.agents import create_pandas_dataframe_agent
# from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain.agents.agent_types import AgentType
# from langchain.agents import create_csv_agent
from langchain import OpenAI, LLMChain
class ChatDocumentQA:
    def __init__(self) -> None:
        pass

    def _get_empty_state(self) -> Dict[str, None]:
        """Create an empty knowledge base."""
        return {"knowledge_base": None}

    def _extract_text_from_pdfs(self, file_paths: List[str]) -> List[str]:
        """Extract text content from PDF files.

        Args:
            file_paths (List[str]): List of file paths.

        Returns:
            List[str]: Extracted text from the PDFs.
        """
        docs = []
        loaders = [UnstructuredFileLoader(file_obj, strategy="fast") for file_obj in file_paths]
        for loader in loaders:
            docs.extend(loader.load())
        return docs

    def _get_content_from_url(self, urls: str) -> List[str]:
        """Fetch content from given URLs.

        Args:
            urls (str): Comma-separated URLs.

        Returns:
            List[str]: List of text content fetched from the URLs.
        """
        file_paths = []
        for url in urls.split(','):
            if validators.url(url):
                headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
                r = requests.get(url, headers=headers)
                if r.status_code != 200:
                    raise ValueError("Check the url of your file; returned status code %s" % r.status_code)
                content_type = r.headers.get("content-type")
                file_extension = mimetypes.guess_extension(content_type)
                temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
                temp_file.write(r.content)
                file_paths.append(temp_file.name)

        docs = self._extract_text_from_pdfs(file_paths)
        return docs

    def _split_text_into_chunks(self, text: str) -> List[str]:
        """Split text into smaller chunks.

        Args:
            text (str): Input text to be split.

        Returns:
            List[str]: List of smaller text chunks.
        """
        text_splitter = CharacterTextSplitter(separator="\n", chunk_size=500, chunk_overlap=100, length_function=len)

        chunks = text_splitter.split_documents(text)

        return chunks
    def _create_vector_store_from_text_chunks(self, text_chunks: List[str]) -> FAISS:
        """Create a vector store from text chunks.

        Args:
            text_chunks (List[str]): List of text chunks.

        Returns:
            FAISS: Vector store created from the text chunks.
        """
        embeddings = OpenAIEmbeddings()

        return FAISS.from_documents(documents=text_chunks, embedding=embeddings)


    def _create_conversation_chain(self,vectorstore):

        _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.

        Chat History:  {chat_history}
        Follow Up Input: {question}
        Standalone question:"""
        CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

        memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

        # llm = ChatOpenAI(temperature=0)
        llm=OpenAI(temperature=0)

        return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(),
                                                     condense_question_prompt=CONDENSE_QUESTION_PROMPT,
                                                     memory=memory)

    def _get_documents_knowledge_base(self, file_paths: List[str]) -> Tuple[str, Dict[str, FAISS]]:
        """Build knowledge base from uploaded files.

        Args:
            file_paths (List[str]): List of file paths.

        Returns:
            Tuple[str, Dict]: Tuple containing a status message and the knowledge base.
        """
        file_path = file_paths[0].name
        file_extension = os.path.splitext(file_path)[1]

        if file_extension == '.pdf':
            pdf_docs = [file_path.name for file_path in file_paths]
            raw_text = self._extract_text_from_pdfs(pdf_docs)
            text_chunks = self._split_text_into_chunks(raw_text)
            vectorstore = self._create_vector_store_from_text_chunks(text_chunks)
            return "file uploaded", {"knowledge_base": vectorstore}
        elif file_extension == '.csv':  
            # agent = self.create_agent(file_path)
            # tools = self.get_agent_tools(agent)
            # memory,tools,prompt = self.create_memory_for_csv_qa(tools)
            # agent_chain = self.create_agent_chain_for_csv_qa(memory,tools,prompt)
            agent_chain = create_csv_agent(
                          OpenAI(temperature=0),
                          file_path,
                          verbose=True,
                          agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
            )
            return "file uploaded", {"knowledge_base": agent_chain}
            
        else:
            return "file uploaded", ""

    def _get_urls_knowledge_base(self, urls: str) -> Tuple[str, Dict[str, FAISS]]:
        """Build knowledge base from URLs.

        Args:
            urls (str): Comma-separated URLs.

        Returns:
            Tuple[str, Dict]: Tuple containing a status message and the knowledge base.
        """
        webpage_text = self._get_content_from_url(urls)
        text_chunks = self._split_text_into_chunks(webpage_text)
        vectorstore = self._create_vector_store_from_text_chunks(text_chunks)
        return "file uploaded", {"knowledge_base": vectorstore}

#************************
#   csv qa
#************************
    def create_agent(self,file_path):
        agent_chain = create_csv_agent(
        OpenAI(temperature=0),
        file_path,
        verbose=True,
        agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
        )
        return agent_chain
    def get_agent_tools(self,agent):
      # search = agent
      tools = [
        Tool(
            name="dataframe qa",
            func=agent.run,
            description="useful for when you need to answer questions about table data and dataframe data",
        )
      ]
      return tools

    def create_memory_for_csv_qa(self,tools):
      prefix = """Have a conversation with a human, answering the following questions about table data and dataframe data as best you can. You have access to the following tools:"""
      suffix = """Begin!"

      {chat_history}
      Question: {input}
      {agent_scratchpad}"""

      prompt = ZeroShotAgent.create_prompt(
        tools,
        prefix=prefix,
        suffix=suffix,
        input_variables=["input", "chat_history", "agent_scratchpad"],
      )
      memory = ConversationBufferMemory(memory_key="chat_history",return_messages=True)

      return memory,tools,prompt

    def create_agent_chain_for_csv_qa(self,memory,tools,prompt):

        llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
        agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
        agent_chain = AgentExecutor.from_agent_and_tools(
            agent=agent, tools=tools, verbose=True, memory=memory
        )

        return agent_chain

    def _get_response(self, message: str, chat_history: List[Tuple[str, str]], state: Dict[str, FAISS],file_paths) -> Tuple[str, List[Tuple[str, str]]]:
        """Get a response from the chatbot.

        Args:
            message (str): User's message/question.
            chat_history (List[Tuple[str, str]]): List of chat history as tuples of (user_message, bot_response).
            state (dict): State containing the knowledge base.

        Returns:
            Tuple[str, List[Tuple[str, str]]]: Tuple containing a status message and updated chat history.
        """
        try:
          if file_paths:
            file_path = file_paths[0].name
            file_extension = os.path.splitext(file_path)[1]

            if file_extension == ".pdf":
                vectorstore = state["knowledge_base"]
                chat = self._create_conversation_chain(vectorstore)
                # user_ques = {"question": message}
                print("chat_history",chat_history)
                response = chat({"question": message,"chat_history": chat_history})
                chat_history.append((message, response["answer"]))
                return "", chat_history

            elif file_extension == '.csv':
                agent_chain = state["knowledge_base"]
                response = agent_chain.run(input = message)
                chat_history.append((message, response))
                return "", chat_history
          else:
              vectorstore = state["knowledge_base"]
              chat = self._create_conversation_chain(vectorstore)
              # user_ques = {"question": message}
              print("chat_history",chat_history)
              response = chat({"question": message,"chat_history": chat_history})
              chat_history.append((message, response["answer"]))
              return "", chat_history
        except:
            chat_history.append((message, "Please Upload Document or URL"))
            return "", chat_history

    def gradio_interface(self) -> None:
        """Create a Gradio interface for the chatbot."""
        with gr.Blocks(css = "style.css" ,theme='freddyaboulton/test-blue') as demo:
            
            gr.HTML("""<center class="darkblue" text-align:center;padding:30px;'><center>
            <center><h1 class ="center" style="color:#fff">ADOPLE AI</h1></center>
            <br><center><h1 style="color:#fff">Virtual Assistant Chatbot</h1></center>""")     
            
            state = gr.State(self._get_empty_state())
            chatbot = gr.Chatbot()
            with gr.Row():
                with gr.Column(scale=0.85):
                    msg = gr.Textbox(label="Question")
                with gr.Column(scale=0.15):
                    file_output = gr.Textbox(label="File Status")
            with gr.Row():
                with gr.Column(scale=0.85):
                    clear = gr.ClearButton([msg, chatbot])
                with gr.Column(scale=0.15):
                    upload_button = gr.UploadButton(
                        "Browse File",
                        file_types=[".txt", ".pdf", ".doc", ".docx", ".csv"],
                        file_count="multiple", variant="primary"
                    )
            with gr.Row():
                with gr.Column(scale=1):
                    input_url = gr.Textbox(label="urls")

            input_url.submit(self._get_urls_knowledge_base, input_url, [file_output, state])
            upload_button.upload(self._get_documents_knowledge_base, upload_button, [file_output, state])
            msg.submit(self._get_response, [msg, chatbot, state,upload_button], [msg, chatbot])

        demo.launch()


if __name__ == "__main__":
    chatdocumentqa = ChatDocumentQA()
    chatdocumentqa.gradio_interface()