Spaces:
Sleeping
Sleeping
from typing import List | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import os | |
import numpy as np | |
class EmbeddingsProcessor: | |
""" | |
Class for processing text to obtain embeddings using a transformer model. | |
""" | |
def __init__(self, model_name: str): | |
""" | |
Initialize the EmbeddingsProcessor with a pre-trained model. | |
Args: | |
model_name (str): The name of the pre-trained model to use for generating embeddings. | |
""" | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model = AutoModel.from_pretrained(model_name).to('cpu') # Change 'cuda' to 'cpu' | |
def get_embeddings(self, texts: List[str]) -> np.ndarray: | |
""" | |
Generate embeddings for a list of texts. | |
Args: | |
texts (List[str]): A list of text strings for which to generate embeddings. | |
Returns: | |
np.ndarray: A NumPy array of embeddings for the provided texts. | |
""" | |
encoded_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt") | |
encoded_input = {k: v.to('cpu') for k, v in encoded_input.items()} # Ensure all tensors are on CPU | |
model_output = self.model(**encoded_input) | |
return model_output.last_hidden_state.mean(dim=1).detach().numpy() |