File size: 23,811 Bytes
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a3296
 
 
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
caa2ac3
 
 
 
 
 
 
 
 
 
 
56a3296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd6d9d
56a3296
 
 
 
caa2ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_option_menu import option_menu
from llm import OpenaiAPI
from pdfProcessor import PDFProcessor
from embeddingsProcessor import EmbeddingsProcessor
from similarityCalculator import SimilarityCalculator
from findUpdate import FindUpdate
from pdfDocumentProcessor import PDFDocumentProcessor
from streamlit_modal import Modal
import os
import time
import shutil
import base64
from findUpdate import FindUpdate  # Import the FindUpdate class
from tempfile import NamedTemporaryFile


icon_url = "https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftheindustryspread.com%2Fwp-content%2Fuploads%2F2019%2F05%2FBroadridge-1.png"
st.set_page_config(page_title="Contract AI", page_icon='https://www.adople.com/assets/img/logo/title2.png',initial_sidebar_state="collapsed")


openai = OpenaiAPI()

# CSS to make the option menu sticky and to target specific container class
st.markdown(
    """
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Quicksand:[email protected]&display=swap');
    body {
        font-family: 'Quicksand', sans-serif;
    }
    .st-emotion-cache-13ln4jf.ea3mdgi5 {
        position: -webkit-sticky;
        position: sticky;
        top: 10;
        z-index: 100;
        padding-top: 42px;
        padding-bottom: 10px;
        border-bottom: 1px solid #e6e6e6;
    }
    header.st-emotion-cache-12fmjuu.ezrtsby2 {
      background-color: #f0f2f6 !important;
    }
    .st-emotion-cache-12fmjuu.ezrtsby2{
        background:url('https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftheindustryspread.com%2Fwp-content%2Fuploads%2F2019%2F05%2FBroadridge-1.png') no-repeat;
        background-size: 250px 50px;
        background-position: center;
        padding-left: 50px;
      }
    .st-emotion-cache-1vt4y43.ef3psqc13{

    }
    </style>
    """,
    unsafe_allow_html=True,
)

# Create the sticky top horizontal option menu within the specified container
with st.container():
    selected_main_option = option_menu(
        menu_title=None,
        options=["Dashboard", "Update Find", "Comparizer"],
        icons=['list', 'binoculars-fill', 'patch-check-fill'],
        menu_icon="cast",
        default_index=0,
        orientation="horizontal",
    )
    st.markdown('</div>', unsafe_allow_html=True)
uploaded_file=''
# Display different content based on the menu selection
if selected_main_option == "Dashboard":
    st.markdown("""
      <style>
      @import url('https://fonts.googleapis.com/css2?family=Quicksand:[email protected]&display=swap');
      body {
          font-family: "Quicksand", sans-serif;
          font-optical-sizing: auto;
          font-weight: <weight>;
          font-style: normal;
      }
      .topic-box {
          background-color: #f0f0f0;
          padding: 10px;
          border-radius: 5px;
          margin-bottom: 10px;
      }
      .topic-box:hover{
        background-color: #000080;
        box-shadow: 6px 1px 12px gray;
        color:#fff;
      }
      .topic-title {
          font-weight: bold;
      }
      .st-emotion-cache-ocqkz7 {
        gap: 1.5rem;
        }
      .st-emotion-cache-1vt4y43.ef3psqc13{
        background-color: #f0f2f6 !important;
        padding: 10px;
        color:black;
        font-weight: bold;
        width: 200px;
        border-style: none;
        border-radius: 15px;
        margin-bottom: 10px;
      }
      .st-emotion-cache-1vt4y43.ef3psqc13:hover{
        background-color: #00578E !important;
        box-shadow: 6px 1px 12px gray;
        color:white;
        font-weight: bold;
        border-style: none;
        width: 200px;
      }
      </style>
      """, unsafe_allow_html=True)
    button_value=''
    uploaded_file=st.file_uploader("Upload your Document")
    col1, col2, col3 = st.columns(3)
    with col1:
        if st.button("Tags"):
            button_value = 'Tags'
    with col2:
        if st.button("Clauses"):
            button_value = 'Clauses'
    with col3:
        if st.button("Summarizer"):
            button_value = 'Summarizer'

    col4, col5, col6= st.columns(3)
    with col4:
        if st.button("Headings"):
            button_value = 'Headings'
    with col5:
        if st.button("Extract Date"):
            button_value = 'Extract Date'
    with col6:
        if st.button("Pdf to Json"):
            button_value = 'Pdf to Json'

    col7, col8, col9= st.columns(3)
    with col7:
        if st.button("Key Values"):button_value = 'Key Values'
    with col8:
        if st.button("Incorrect Sentences"):button_value = 'Incorrect Sentences'
    with col9:
        if st.button("Incomplete Sentences"):button_value = 'Incomplete Sentences'

    col10, col11,_= st.columns(3)
    with col10:
        if st.button("Aggressive Content"):
            button_value = 'Aggressive Content'
    # with col11:
    #     if st.button("Contract Generator"):
    #         button_value = 'Contract Generator'

    if button_value == '' or button_value == 'Home':
        st.title('')
    # Tags
    elif button_value == 'Tags':
        confirmationTag = Modal("Tags Extracter", key= "tag_extract")
        if uploaded_file is not None:
          print('File Name : ',uploaded_file.name)
          ftype=uploaded_file.name.split('.')
          if ftype[-1]=='pdf':
              docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
          elif ftype[-1]=='docx':
              docs_data = openai.docx_to_text(uploaded_file)
          conversation = [{"role": "system", "content": """
                        You are a helpful Tags Extracter.
                        analyze the given contract to extract tags for following contract in triple backticks.
                        tags should be bullet points.contract :
                        """},
                        {"role": "user", "content": f"```contract: {docs_data}```"}]
          get_response = openai.get_response(conversation)

          if get_response == ['', None]:
            st.toast("No Result is founded.")
          else:
            with confirmationTag.container():
              st.write("Similarity Scores Table:")
              st.write(get_response)
              if st.button('Close Window'):
                  confirmationTag.close()
        else:
            st.toast("No Document is Uploaded.")

    # Clauses
    elif button_value == 'Clauses':
        confirmationClauses = Modal("Clauses Extracter", key= "clauses_extract")
        if uploaded_file is not None:
          print('File Name : ',uploaded_file.name)
          ftype=uploaded_file.name.split('.')
          if ftype[-1]=='pdf':
            docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
          elif ftype[-1]=='docx':
            docs_data = openai.docx_to_text(uploaded_file)
          conversation = [{"role": "system", "content": """
                        You are a helpful Cluases and SubCluases Extracter From Given Content
                        Extract clauses and sub-clauses from the provided contract PDF
                        """},
                        {"role": "user", "content": f"```contract: {docs_data}```"}]
          get_response = openai.get_response(conversation)
          if get_response == ['', None]:
              st.toast("No Result is founded.")
          else:
              with confirmationClauses.container():
                  st.write("Similarity Scores Table:")
                  st.write(get_response)

                  if st.button('Close.'):
                      confirmationClauses.close()
        else:
            st.toast("No Document is Uploaded.")

    # Summarizer
    elif button_value == 'Summarizer':
        confirmationSummarizer = Modal("summarizer Extracter", key= "summarizer_extract")
        if uploaded_file is not None:
            print('File Name : ', uploaded_file.name)
            ftype = uploaded_file.name.split('.')
            if ftype[-1] == 'pdf':
                docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
            elif ftype[-1] == 'docx':
                docs_data = openai.docx_to_text(uploaded_file)
            conversation = [{"role": "system", "content": """
                            You are a helpful summarizer.
                            Write a concise summary of the following contract:
                            """},
                            {"role": "user", "content": f"```contract: {docs_data}```"}]
            get_response = openai.get_response(conversation)
            if get_response == ['', None]:
                st.toast("No Result is founded.")
            else:
                with confirmationSummarizer.container():
                    st.write("summarizer Extracter:")
                    st.write(get_response)

                    if st.button('Close.'):
                        confirmationSummarizer.close()
        else:
            st.toast("No Document is Uploaded.")

    # Headings
    elif button_value == 'Headings':
        confirmationHeadings = Modal("Headings Extracter", key= "Headings_extract")
        if uploaded_file is not None:
          print('File Name : ',uploaded_file.name)
          ftype=uploaded_file.name.split('.')
          if ftype[-1]=='pdf':
            docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
          elif ftype[-1]=='docx':
            docs_data = openai.docx_to_text(uploaded_file)
          conversation = [{"role": "system", "content": """
                        You are a helpful document assistant.
                        Extract Headings from given paragraph do not generate just extract the headings from paragraph.
                        """},
                        {"role": "user", "content": f"```contract: {docs_data}```"}]
          get_response = openai.get_response(conversation)
          if get_response == ['', None]:
                st.toast("No Result is founded.")
          else:
              with confirmationHeadings.container():
                  st.write("Headings Extracter:")
                  st.write(get_response)

                  if st.button('Close.'):
                      confirmationHeadings.close()
        else:
            st.toast("No Document is Uploaded.")

    # Extract Date
    elif button_value == 'Extract Date':
        confirmationExtractDate = Modal("Extract Date Extracter", key= "date_extract")
        if uploaded_file is not None:
          print('File Name : ',uploaded_file.name)
          ftype=uploaded_file.name.split('.')
          if ftype[-1]=='pdf':
            docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
          elif ftype[-1]=='docx':
            docs_data = openai.docx_to_text(uploaded_file)
          conversation = [{"role": "system", "content": """
                        You are a helpful assistant.
                        Your task is Identify Dates and Durations Mentioned in the contract and extract that date and duration in key-value pair.
                        format:
                        date:
                        -extracted date
                        -
                        Durations:
                        -extracted Durations
                        -
                        - """},
                        {"role": "user", "content": f"```contract: {docs_data}```"}]
          get_response = openai.get_response(conversation)
          if get_response == ['', None]:
              st.toast("No Result is founded.")
          else:
              with confirmationExtractDate.container():
                  st.write("Extract Date Extracter:")
                  st.write(get_response)

                  if st.button('Close.'):
                      confirmationExtractDate.close()
        else:
            st.toast("No Document is Uploaded.")

    # Pdf to Json
    elif button_value == 'Pdf to Json':
        confirmationPdf = Modal("Pdf to Json Extracter", key= "Pdf to Json_extract")
        if uploaded_file is not None:
          print('File Name : ',uploaded_file.name)
          ftype=uploaded_file.name.split('.')
          if ftype[-1]=='pdf':
            docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
          elif ftype[-1]=='docx':
            docs_data = openai.docx_to_text(uploaded_file)
          conversation = [{"role": "system", "content": """
                        You are a helpful assistant.
                        Your task is Get the text and analyse and split it into Topics and Content in json format.Give Proper Name to Topic dont give any Numbers and Dont Give any empty Contents.The Output Format Should Be very good."""},
                        {"role": "user", "content": f"```contract: {docs_data}```"}]
          get_response = openai.get_response(conversation)
          if get_response == ['', None]:
              st.toast("No Result is founded.")
          else:
              with confirmationPdf.container():
                  st.write("Pdf to Json Extracter:")
                  st.write(get_response)

                  if st.button('Close.'):
                      confirmationPdf.close()
        else:
            st.toast("No Document is Uploaded.")

    # Key Values
    elif button_value == 'Key Values':
        confirmationKey= Modal("Key values Extracter", key= "key_values_extract")
        if uploaded_file is not None:
          print('File Name : ',uploaded_file.name)
          ftype=uploaded_file.name.split('.')
          if ftype[-1]=='pdf':
            docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
          elif ftype[-1]=='docx':
            docs_data = openai.docx_to_text(uploaded_file)
          conversation = [{"role": "system", "content": """
                        You are a helpful Keywords Extracter..
                        analyze the given contract and Extract Keywords for following contract in triple backticks. tags should be bullet points.contract :
                        """},
                        {"role": "user", "content": f"```contract: {docs_data}```"}]
          get_response = openai.get_response(conversation)
          if get_response == ['', None]:
              st.toast("No Result is founded.")
          else:
              with confirmationKey.container():
                  st.write("Key values Extracter:")
                  st.write(get_response)

                  if st.button('Close.'):
                      confirmationKey.close()
        else:
            st.toast("No Document is Uploaded.")

    # Incorrect Sentences
    elif button_value == 'Incorrect Sentences':
        confirmationIncorrect = Modal("Incorrect Sentences Extracter", key= "Incorrect_Sentences_extract")
        if uploaded_file is not None:
          print('File Name : ',uploaded_file.name)
          ftype=uploaded_file.name.split('.')
          if ftype[-1]=='pdf':
            docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
          elif ftype[-1]=='docx':
            docs_data = openai.docx_to_text(uploaded_file)
          conversation = [{"role": "system", "content": """
                        You are a helpful Error sentence finder.
                        list out the grammatical error sentence in the given text:
                        """},
                        {"role": "user", "content": f"```contract: {docs_data}```"}]
          get_response = openai.get_response(conversation)
          if get_response == ['', None]:
              st.toast("No Result is founded.")
          else:
              with confirmationIncorrect.container():
                  st.write("Incorrect Sentences Extracter:")
                  st.write(get_response)

                  if st.button('Close.'):
                      confirmationIncorrect.close()
        else:
            st.toast("No Document is Uploaded.")

    # Incomplete Sentences
    elif button_value == 'Incomplete Sentences':
        confirmationIncomplete = Modal("Incomplete Sentences Extracter", key= "Incomplete_Sentences_extract")
        if uploaded_file is not None:
          print('File Name : ',uploaded_file.name)
          ftype=uploaded_file.name.split('.')
          if ftype[-1]=='pdf':
            docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
          elif ftype[-1]=='docx':
            docs_data = openai.docx_to_text(uploaded_file)
          conversation = [{"role": "system", "content": """
                            You are a helpful incomplete sentences finder.
                            list out the incomplete sentences in the following text:
                            """},
                        {"role": "user", "content": f"```contract: {docs_data}```"}]
          get_response = openai.get_response(conversation)
          if get_response == ['', None]:
              st.toast("No Result is founded.")
          else:
              with confirmationIncomplete.container():
                  st.write("Incomplete Sentences Extracter:")
                  st.write(get_response)

                  if st.button('Close.'):
                      confirmationIncomplete.close()
        else:
            st.toast("No Document is Uploaded.")

    # Aggressive Content
    elif button_value == 'Aggressive Content':
      confirmationAgg = Modal("Aggressive content Extracter", key= "Aggressive_content_extract")
      if uploaded_file is not None:
        print('File Name : ',uploaded_file.name)
        ftype=uploaded_file.name.split('.')
        if ftype[-1]=='pdf':
          docs_data = openai.pdf_to_text_pypdf2(uploaded_file)
        elif ftype[-1]=='docx':
          docs_data = openai.docx_to_text(uploaded_file)
        conversation = [{"role": "system", "content": """
                      You are a helpful Keywords Extracter..
                      analyze the given contract and Extract Keywords for following contract in triple backticks. tags should be bullet points.contract :
                      """},
                      {"role": "user", "content": f"```contract: {docs_data}```"}]
        get_response = openai.get_response(conversation)
        if get_response == ['', None]:
            st.toast("No Result is founded.")
        else:
            with confirmationAgg.container():
                st.write("Aggressive content Extracter:")
                st.write(get_response)

                if st.button('Close.'):
                    confirmationAgg.close()
      else:
          st.toast("No Document is Uploaded.")

    # Contract Generator
    # elif button_value == 'Contract Generator':
    #     confirmationGen = Modal("Contract Generator", key= "contract_gen1")
    #     get_response=''
    #     contract_info=st.text_input("Enter Contract info")
    #     if contract_info not in None:
    #         conversation = [{"role": "system", "content": """You are a helpful assistant. Your task is creating a complete contract with important terms and condiations based on the contract information and type.
    #             the contract type given by user.
    #             generate a contract :
    #             """},
    #             {"role": "user", "content": f"```content: {contract_info}```"}]
    #         get_response = openai.get_response(conversation)
    #         if get_response == ['', None]:
    #             st.toast("No Result is founded.")
    #         else:
    #             with confirmationGen.container():
    #                 st.write("Contract Template")
    #                 st.write(get_response)
    
    #                 if st.button('Close.'):
    #                     confirmationGen.close()
    #     else:
    #         st.toast("Please Enter Contract Info")

elif selected_main_option == "Update Find":
    processor = PDFDocumentProcessor()
    processor.file_uploaders()

    if processor.uploaded_agreement and processor.uploaded_template:
        processor.save_uploaded_files()

elif selected_main_option == "Comparizer":
    confirmationEdit = Modal("Contract Comparizer", key= "popUp_edit")
    col1, col2 = st.columns(2)
    # Clear the templates and contracts folders before uploading new files
    templates_folder = './templates'
    contracts_folder = './contracts'
    SimilarityCalculator.clear_folder(templates_folder)
    SimilarityCalculator.clear_folder(contracts_folder)

    with col1:
        st.header("Upload Templates")
        uploaded_files_templates = st.file_uploader("PDF Template", accept_multiple_files=True, type=['pdf'])
        os.makedirs(templates_folder, exist_ok=True)
        for uploaded_file in uploaded_files_templates:
            if SimilarityCalculator.save_uploaded_file(uploaded_file, templates_folder):
                st.write(f"Saved: {uploaded_file.name}")

    with col2:
        st.header("Upload Contracts")
        uploaded_files_contracts = st.file_uploader("PDF Contracts", key="contracts", accept_multiple_files=True, type=['pdf'])
        os.makedirs(contracts_folder, exist_ok=True)
        for uploaded_file in uploaded_files_contracts:
            if SimilarityCalculator.save_uploaded_file(uploaded_file, contracts_folder):
                st.write(f"Saved: {uploaded_file.name}")

    model_name = st.selectbox("Select Model", ['sentence-transformers/multi-qa-mpnet-base-dot-v1','sentence-transformers/multi-qa-MiniLM-L6-cos-v1',], index=0)

    if st.button("Compute Similarities"):
        pdf_processor = PDFProcessor()
        embedding_processor = EmbeddingsProcessor(model_name)

        # Process templates
        template_files = [os.path.join(templates_folder, f) for f in os.listdir(templates_folder)]
        template_texts = [pdf_processor.extract_text_from_pdfs([f])[0] for f in template_files if pdf_processor.extract_text_from_pdfs([f])]
        template_embeddings = embedding_processor.get_embeddings(template_texts)

        # Process contracts
        contract_files = [os.path.join(contracts_folder, f) for f in os.listdir(contracts_folder)]
        contract_texts = [pdf_processor.extract_text_from_pdfs([f])[0] for f in contract_files if pdf_processor.extract_text_from_pdfs([f])]
        contract_embeddings = embedding_processor.get_embeddings(contract_texts)

        # Compute similarities
        similarities = SimilarityCalculator.compute_similarity(template_embeddings, contract_embeddings)

        # Display results in a table format
        similarity_data = []
        for i, contract_file in enumerate(contract_files):
            row = [i + 1, os.path.basename(contract_file)]  # SI No and contract file name
            for j in range(len(template_files)):
                if j < similarities.shape[1] and i < similarities.shape[0]:  # Check if indices are within bounds
                    row.append(f"{similarities[i, j] * 100:.2f}%")  # Format as percentage
                else:
                    row.append("N/A")  # Handle out-of-bounds indices gracefully
            similarity_data.append(row)

        # Create a DataFrame for the table
        columns = ["SI No", "Contract"] + [os.path.basename(template_files[j]) for j in range(len(template_files))]
        similarity_df = pd.DataFrame(similarity_data, columns=columns)
        if similarity_df.empty:
            st.write("No similarities computed.")
        else:
            with confirmationEdit.container():
                st.write("Similarity Scores Table:")
                st.table(similarity_df.style.hide(axis="index"))

                if st.button('Close Window'):
                    confirmationEdit.close()

        submitted = st.button("Show Result")
        if submitted:
              confirmationEdit.open()
        if confirmationEdit.is_open():
            with confirmationEdit.container():
                st.write("Similarity Scores Table:")
                st.table(similarity_df.style.hide(axis="index"))

                if st.button('Close Result'):
                    confirmationEdit.close()