emi-latest-demo / app.py
alfredplpl's picture
Update app.py
9e3a544 verified
import spaces
from diffusers import AutoPipelineForText2Image, EulerAncestralDiscreteScheduler
from diffusers import UniPCMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import random
import os
from huggingface_hub import hf_hub_download
import torch
from torch import autocast
from safetensors import safe_open
from compel import Compel, ReturnedEmbeddingsType
from safetensors.torch import load_file
model_id = "aipicasso/emix-1-0"
auth_token=os.environ["ACCESS_TOKEN"]
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_8step_lora.safetensors"
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler",token=auth_token)
pipe = AutoPipelineForText2Image.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
scheduler=scheduler,
token=auth_token)
pipe.load_lora_weights(hf_hub_download(repo, ckpt))
pipe.fuse_lora()
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
state_dict = load_file("unaestheticXLv31.safetensors")
pipe.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
pipe.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] ,
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True])
pipe=pipe.to("cuda")
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
@spaces.GPU
def inference(prompt, guidance, steps, seed=0, neg_prompt="", disable_auto_prompt_correction=False):
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
prompt,neg_prompt=auto_prompt_correction(prompt,neg_prompt,disable_auto_prompt_correction)
height=1024
width=1024
print(prompt,neg_prompt)
result=txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator)
return result, None
def auto_prompt_correction(prompt_ui,neg_prompt_ui,disable_auto_prompt_correction):
# auto prompt correction
prompt=str(prompt_ui)
neg_prompt=str(neg_prompt_ui)
prompt=prompt.lower()
neg_prompt=neg_prompt.lower()
if(disable_auto_prompt_correction):
return prompt, neg_prompt
if(prompt=="" and neg_prompt==""):
prompt="1girl, smile, brown bob+++ hair, brown eyes, sunflowers, sky"
neg_prompt=f"unaestheticXLv31, photo, deformed, realism, disfigured, low contrast, bad hand"
return prompt, neg_prompt
splited_prompt=prompt.replace(","," ").replace("_"," ").replace("+"," ").split(" ")
human_words=["1girl","girl","maid","maids","female","1woman","woman","girls","2girls","3girls","4girls","5girls","a couple of girls","women","1boy","boy","boys","a couple of boys","2boys","male","1man","1handsome","1bishounen","man","men","guy","guys"]
for word in human_words:
if( word in splited_prompt):
prompt=f"{prompt}"
neg_prompt=f"unaestheticXLv31,{neg_prompt}, photo, deformed, realism, disfigured, low contrast, bad hand"
return prompt, neg_prompt
animal_words=["cat","dog","bird","pigeon","rabbit","bunny","horse"]
for word in animal_words:
if( word in splited_prompt):
prompt=f"{prompt}, 4k, detailed"
neg_prompt=f"{neg_prompt},unaestheticXLv31"
return prompt, neg_prompt
background_words=["mount fuji","mt. fuji","building", "buildings", "tokyo", "kyoto", "nara", "shibuya", "shinjuku"]
for word in background_words:
if( word in splited_prompt):
prompt=f"{prompt}, highly detailed"
neg_prompt=f"girl, deformed+++, {neg_prompt}, girl, boy, photo, people, low quality, ui, error, lowres, jpeg artifacts, 2d, 3d, cg, text"
return prompt, neg_prompt
return prompt,neg_prompt
def txt_to_img(prompt, neg_prompt, guidance, steps, width, height, generator):
conditioning, pooled = compel(prompt)
neg_conditioning, neg_pooled = compel(neg_prompt)
result = pipe(
prompt_embeds=conditioning,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=neg_conditioning,
negative_pooled_prompt_embeds=neg_pooled,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator
)
return result.images[0]
css = """.main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="main-div">
<div>
<h1>Emix 1.0 Lightning Demo</h1>
</div>
<p>
You can use new model: <a href="https://huggingface.co./spaces/aipicasso/emi-2-demo">Emi 2</a><br>
</p>
<p>
サンプル: そのままGenerateボタンを押してください。<br>
sample : Click "Generate" button without any prompts.
</p>
<p>
sample prompt1 : 1girl, cool+, smile--, colorful long hair, colorful eyes, stars, night, pastel color, transparent+
</p>
<p>
sample prompt2 : 1boy, focus, wavy short hair, blue eyes, black shirt, white background, simple background
</p>
<p>
<a style="display:inline-block" href="https://huggingface.co./spaces/aipicasso/emi-latest-demo?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> to say goodbye from waiting for the generating.
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="[your prompt]")
generate = gr.Button(value="Generate")
image_out = gr.Image()
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
disable_auto_prompt_correction = gr.Checkbox(label="Disable auto prompt corretion.")
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=1.5, maximum=10, step=0.1)
steps = gr.Slider(label="Steps", value=8, minimum=1, maximum=20, step=1)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
inputs = [prompt, guidance, steps, seed, neg_prompt, disable_auto_prompt_correction]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
demo.queue()
demo.launch()