import torch import torch.nn as nn import torch.nn.functional as F from networks.layers.basic import ConvGN class FPNSegmentationHead(nn.Module): def __init__(self, in_dim, out_dim, decode_intermediate_input=True, hidden_dim=256, shortcut_dims=[24, 32, 96, 1280], align_corners=True): super().__init__() self.align_corners = align_corners self.decode_intermediate_input = decode_intermediate_input self.conv_in = ConvGN(in_dim, hidden_dim, 1) self.conv_16x = ConvGN(hidden_dim, hidden_dim, 3) self.conv_8x = ConvGN(hidden_dim, hidden_dim // 2, 3) self.conv_4x = ConvGN(hidden_dim // 2, hidden_dim // 2, 3) self.adapter_16x = nn.Conv2d(shortcut_dims[-2], hidden_dim, 1) self.adapter_8x = nn.Conv2d(shortcut_dims[-3], hidden_dim, 1) self.adapter_4x = nn.Conv2d(shortcut_dims[-4], hidden_dim // 2, 1) self.conv_out = nn.Conv2d(hidden_dim // 2, out_dim, 1) self._init_weight() def forward(self, inputs, shortcuts): if self.decode_intermediate_input: x = torch.cat(inputs, dim=1) else: x = inputs[-1] x = F.relu_(self.conv_in(x)) x = F.relu_(self.conv_16x(self.adapter_16x(shortcuts[-2]) + x)) x = F.interpolate(x, size=shortcuts[-3].size()[-2:], mode="bilinear", align_corners=self.align_corners) x = F.relu_(self.conv_8x(self.adapter_8x(shortcuts[-3]) + x)) x = F.interpolate(x, size=shortcuts[-4].size()[-2:], mode="bilinear", align_corners=self.align_corners) x = F.relu_(self.conv_4x(self.adapter_4x(shortcuts[-4]) + x)) x = self.conv_out(x) return x def _init_weight(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p)