import math import torch import torch.nn as nn import torch.nn.functional as F from utils.math import truncated_normal_ class Downsample2D(nn.Module): def __init__(self, mode='nearest', scale=4): super().__init__() self.mode = mode self.scale = scale def forward(self, x): n, c, h, w = x.size() x = F.interpolate(x, size=(h // self.scale + 1, w // self.scale + 1), mode=self.mode) return x def generate_coord(x): _, _, h, w = x.size() device = x.device col = torch.arange(0, h, device=device) row = torch.arange(0, w, device=device) grid_h, grid_w = torch.meshgrid(col, row) return grid_h, grid_w class PositionEmbeddingSine(nn.Module): def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x): grid_y, grid_x = generate_coord(x) y_embed = grid_y.unsqueeze(0).float() x_embed = grid_x.unsqueeze(0).float() if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingLearned(nn.Module): def __init__(self, num_pos_feats=64, H=30, W=30): super().__init__() self.H = H self.W = W self.pos_emb = nn.Parameter( truncated_normal_(torch.zeros(1, num_pos_feats, H, W))) def forward(self, x): bs, _, h, w = x.size() pos_emb = self.pos_emb if h != self.H or w != self.W: pos_emb = F.interpolate(pos_emb, size=(h, w), mode="bilinear") return pos_emb