import math import torch.nn as nn from utils.learning import freeze_params class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, dilation=dilation, padding=dilation, bias=False) self.bn2 = BatchNorm(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride self.dilation = dilation def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, output_stride, BatchNorm, freeze_at=0): self.inplanes = 64 super(ResNet, self).__init__() if output_stride == 16: strides = [1, 2, 2, 1] dilations = [1, 1, 1, 2] elif output_stride == 8: strides = [1, 2, 1, 1] dilations = [1, 1, 2, 4] else: raise NotImplementedError # Modules self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0], BatchNorm=BatchNorm) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1], BatchNorm=BatchNorm) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2], BatchNorm=BatchNorm) # self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm) self.stem = [self.conv1, self.bn1] self.stages = [self.layer1, self.layer2, self.layer3] self._init_weight() self.freeze(freeze_at) def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm(planes * block.expansion), ) layers = [] layers.append( block(self.inplanes, planes, stride, max(dilation // 2, 1), downsample, BatchNorm)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, dilation=dilation, BatchNorm=BatchNorm)) return nn.Sequential(*layers) def forward(self, input): x = self.conv1(input) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) xs = [] x = self.layer1(x) xs.append(x) # 4X x = self.layer2(x) xs.append(x) # 8X x = self.layer3(x) xs.append(x) # 16X # Following STMVOS, we drop stage 5. xs.append(x) # 16X return xs def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def freeze(self, freeze_at): if freeze_at >= 1: for m in self.stem: freeze_params(m) for idx, stage in enumerate(self.stages, start=2): if freeze_at >= idx: freeze_params(stage) def ResNet50(output_stride, BatchNorm, freeze_at=0): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], output_stride, BatchNorm, freeze_at=freeze_at) return model def ResNet101(output_stride, BatchNorm, freeze_at=0): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], output_stride, BatchNorm, freeze_at=freeze_at) return model if __name__ == "__main__": import torch model = ResNet101(BatchNorm=nn.BatchNorm2d, output_stride=8) input = torch.rand(1, 3, 512, 512) output, low_level_feat = model(input) print(output.size()) print(low_level_feat.size())